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Derivation of semiconductor laser mean-field and Swift-Hohenberg equations

J.-F. Mercier* and J. V. Moloney†

Department of Mathematics, University of Arizona, Tucson, Arizona 85721
~Received 22 May 2002; published 27 September 2002!

Bulk and quantum well semiconductor lasers by nature display fundamentally different physical character-
istics relative to multilevel gas and solid state lasers. In particular, the refractive index is nonzero at peak gain
and the peak gain can shift strongly with varying carrier density or temperature. Moreover, a quantum well
laser gain may be strongly asymmetric if more than the lowest subband is populated. Rigorously computed and
experimentally validated, gain and refractive index spectra are now available for a variety of quantum well
structures emitting from the infrared to the visible. Active devices can be designed and grown such that the
gain spectrum remains approximately parabolic for carrier density variations typically encountered in above
threshold pumped broad area edge-emitting semiconductor lasers. Under this assumption, we derive a robust
optical propagation model that tracks the important peak gain shifts and broadening as long as the gain remains
approximately parabolic over the relevant energy range in a running laser. We next derive a multimode model
where the longitudinal modes are projected out of the total field. The next stage is to derive a mean-field single
longitudinal mode model for a wide aperture semiconductor laser. The mean-field model allows for significant
cavity losses and widely different facet reflectivities such as occurs with antireflection- and high-reflectivity–
coated facets. The single mode mean-field model is further reduced using an asymptotic expansion of the
relevant physical fields with respect to a small parameter. The end result is a complex semiconductor Swift-
Hohenberg description of a single longitudinal mode wide aperture laser. The latter should provide a useful
model for studying scientifically and technologically important lasers such as vertical cavity surface emitting
semiconductor lasers.

DOI: 10.1103/PhysRevE.66.036221 PACS number~s!: 42.55.Px, 42.65.Sf
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INTRODUCTION

Semiconductor lasers occupy a special niche in emerg
optoelectronic technologies, offering compact size and v
high bandwidth. The very large gain offered by these devi
comes at a price however. In contrast to gas or other s
state lasers where simple few-level quantum mechanical
scriptions suffice, semiconductor lasers involve comp
many-body interactions within and between multicompon
plasmas@1,2#. Consequently, new features emerge wh
profoundly influence their operational characteristics. Of p
ticular significance is a strong amplitude-phase coupling
the electric field and the shift of the semiconductor gain p
with varying carrier density or temperature. Significant ga
line shape asymmetries typically occur when higher s
bands in the quantum well~QW! become excited. A long
standing problem with gain calculations is the inaccuracy
gain predictions in the neighborhood of the renormaliz
band edge. Gain formulations based on Lorentzian line sh
functions tend to yield nonphysical absorption below t
renormalized band edge. This nonphysical prediction w
known to be due to an oversimplified treatment of polari
tion dephasing in the semiconductor material. The assu
tion that collisional dephasing could be treated at a rate eq
tion level has been identified as the main culprit. T
semiconductor line shape problem was only solved fa
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recently when it was recognized that both diagonal and n
diagonal dephasing collisions needed to be treated at the
quantum kinetic level. A detailed review of this problem wi
relevant references to the earlier literature is contained in
textbook by Chow and Koch@3#. A surprising result of these
calculations was that, not only did the nonphysical abso
tion below the band edge disappear, but so also did
strong falloff of the gain line shape near the band edge
fact, the resultant gain line shape looks much more symm
ric, in agreement with experimental gain measurements
marked asymmetry in the gain only appears when hig
confined subbands are populated.

A semiconductor laser theory which simultaneously inc
porates full band structure, many-body dynamics, and pro
gation effects is beyond the existing or anticipated superc
puting capabilities. An alternative approach is to decou
the many-body physics from the the optical propagation a
incorporate this as a quasiequilibrium optical response fu
tion that acts as a source term in Maxwell’s equations. T
approximation inherent in this approach is that the very f
~femtosecond! dynamics associated with many-body carrie
carrier and carrier-phonon scattering are slaved to the t
cally much slower~picosecond to nanosecond! dynamics of
the semiconductor laser. One might argue that experim
tally measured gain/absorption and refractive index spe
would provide the ideal input to an optical propagati
model. However, reliable simultaneous experimental m
surements of low-density absorption, high-density gain, a
refractive index spectra are not widely available. Moreov
the various reduced model laser parameters derived in
paper would then appear as tabulated numbers rather
analytic expressions. The combination of rigorous ba
©2002 The American Physical Society21-1
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structure and microscopic calculations only require as in
the same band structure parameters that are available t
materials grower. No other adjustable parameters are nee
Convergent refractive index and linewidth enhancement
tor spectra require the inclusion of detuned barrier state
addition to the well states. Experimental measurements
absorption, gain, and refractive index spectra across a b
range of active group III-V and II-VI single and multipl
QW materials now match quantitatively with the full micro
scopic theory@4–7#. Databases for different active QW
semiconductor materials can be built up beforehand and u
directly as input to the optical propagation model.

Existing phenomenological theories of the semiconduc
laser introduce a linewidth enhancement ora factor @8#,
which is a measure of the strength of the amplitude-ph
coupling of the laser field. This quantity which is derive
from the full microscopic theory as a linearization about t
threshold carrier density, is a qualitative measure of
strong frequency chirp of pulses generated within semic
ductor amplifiers or lasers and the strong transverse filam
tation instabilities observed in high-power wide-apertu
semiconductor lasers. Any derivation of a reduced ord
parameter equation description of a semiconductor la
should reflect the presence of this quantity at leading or
Another unique aspect of the behavior of a semicondu
laser is the rather pronounced shift of the gain peak w
varying carrier density and lattice temperature. This is p
ticularly evident in wide-aperture single longitudinal mo
lasers, such as vertical cavity surface emitting las
~VCSELs! @9#, where the relative location of the gain pea
and cavity mode, strongly determines the transverse sp
intensity output.

Pattern formation in wide-aperture two-level lasers can
described by a systematic reduction of the full las
Maxwell-Bloch equations to a laser complex Swi
Hohenberg~CSH! equation@10,11#. An important conclusion
from this work is that the latter amplitude equation descr
tion, although strictly valid in the neighborhood of the las
threshold, holds true even well beyond the onset of las
However, the single Swift-Hohenberg equation is not a go
model to describe a class B laser. The model can be exte
to include the mathematical stiffness of such laser syst
by augmenting the CSH equation by a mean-flow describ
the slow dynamics of the laser material inversion@10,11#.
Later the model was extended in a phenomenological m
ner to apply to semiconductor lasers and to study the st
lization of the weak turbulence in semiconductor lasers us
an optical feedback scheme@12#. The latter approach wa
capable of qualitatively capturing the filamentation instab
ties experimentally observed in a wide-aperture semicond
tor laser. Various other qualitative analytic approaches
treating the semiconductor gain and refractive index in o
cal propagation problems exist in the recent literat
@13,14#. As stressed above, the details of semiconductor
terial growth strongly influences the latter physical propert
so these phenomenological approaches add little insight
the behavior of real semiconductor lasers.

Our goal in this paper is to derive a self-consistent th
retical model of a semiconductor laser that incorporates
03622
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microscopically computed semiconductor response thro
simple fitting functions. This enables us to retain expli
analytic expressions throughout the theoretical developm
As the running laser only accesses a finite fraction of the
multi-THz gain bandwidth and a finite range of carrier de
sities, we will restrict our current model to active semico
ductor media with gain spectra that remain nearly parab
in the relevant wavelength and carrier density range. We
also assume a fixed temperature in the laser. The latte
striction could be removed by adding a temperature equa
and extending the gain tables in an extra physical dimens
We stress here that we are using the fully converged c
puted semiconductor line shape as input. As we cana priori
determine whether the semiconductor active material fu
the near-parabolic gain line shape requirement, we will us
simple Lorentzian fit to the line shape where the latter’s
rameters become functions of carrier density@15#. Any
changes in the laser structure@i.e., QW width, depth, materia
composition, and nature of barrier regions~graded index
self-confinement heterostructure versus self-confinement
erostructure, etc.!# will be reflected in changes in the lase
equation coefficients. A secondary goal is to derive a phy
cally self-consistent partial differential equation model fro
which single and multimode models can be derived. Here
want to allow for the fact that many low- and high-pow
edge emitters contain facets with high and low reflectiv
coatings. Consequently the usual mean-field assumption
not work without some form of nonlinear coordinate tran
formation. The single longitudinal mode model will becom
the starting point for a further CSH reduction of the sem
conductor laser equations valid for a wide-aperture sing
longitudinal mode semiconductor laser. The latter provide
generalized rate equation description of such a laser. We
show that the linewidth enhancement factora appears ex-
plicitly but that other contributions such as peak gain sh
with density also make significant contributions.

The paper is organized as follows. The beginning of
paper will be concerned with the simplification of the effe
tive Bloch equations~EBE! @15#. This model assumes tha
the physical gain can be approximated in the vicinity of
spectral peak by one or more Lorentzian functions. As m
tioned above, this is a restriction on the applicability of t
model presented here. In principle, this restriction could
lifted and the procedure outlined in this paper could be
plied to the raw gain data. In Sec. I we generalize the EBE
the case of counterpropagating waves. Then we derive
Sec. II and Appendices A and B a set of coupled longitudina
mode equations valid for wide-aperture semiconductor
sers. Following this, we restrict the model to a sing
longitudinal mode, retaining the transverse dependence,
obtain the mean-field effective Bloch equations~MFEBE!.
Section III concerns the derivation of the simplified MFEB
expressed with dimensionless variables: it starts with the
ear stability analysis of the MFEBE in order to determine t
lasing threshold. Then it becomes possible to define lin
approximations versus the carrier density of the gain and
the refractive index.

In the end of the paper we derive the semiconductor C
order-parameter equations. Section IV is devoted to the c
1-2
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struction of the neutral curves deduced from the linear
bility analysis of the simplified MFEBE. Section V dea
with the nonlinear analysis of the simplified MFEBE, leadi
both to the derivation of a SH equation and to the gene
ized rate equation model by including the mean flow@12#.

I. STARTING MODEL: THE EFFECTIVE BLOCH
EQUATIONS GENERALIZED TO
COUNTERPROPAGATING WAVES

Starting from the full microscopic theory including man
body interactions, and using a Lorentzian approximation
the susceptibility x(N,v), the Maxwell semiconducto
Bloch equation model was derived@15#. This model resolves
the full spatiotemporal~longitudinal and transverse! behavior
of a general semiconductor amplifier or laser. Within th
model, the susceptibility, which is critical to capturing th
gain dispersion, is approximated by superposition of a ba
ground susceptibility frequency independentx0(N) and a
Lorentzian

x~N,v!5x0~N!1
A~N!

iG0~N!1d01v2d~N!
, ~1!

whered05vc2Eg /\ is the detuning parameter withEg the
bare band gap andvc the reference frequency,A(N) deter-
mines the strength of the Lorentzian,G0(N) determines the
bandwidth of the spectrum which changes with density, a
d1(N) represents the gain peak shift with the density.
principle, multiple Lorentzians~poles! can be included in
order to improve the fit to the gain and refractive index sp
tra over an arbitrary frequency bandwidth. For the pres
discussion, a single pole will suffice. An important point
note is that the gain spectra computed in the past u
many-body theory for a variety of quantum well laser ma
rials, show a pronounced asymmetry with a sharp rise in
gain near the band edge@1#. However, experimentally mea
sured QW gain spectra do not display this feature—they l
much more symmetric and bulklike. As mentioned in t
Introduction, this discrepancy has now been resolved
recent many-body calculations show quantitative agreem
with experiment@4–7#. The source of the discrepancy aro
from ignoring nondiagonal scattering terms in the quant
Boltzmann description of the collisional relaxation terms a
pearing in the microscopic semiconductor Bloch equati
@16#. This result means that the usual rate equation assu
tion made in this model is inappropriate and further justifi
using a fitting procedure to the quantitatively computed g
spectra. Although gain spectral shapes could be accura
calculated with the improved approach, there still remaine
strong discrepancy between experimentally measured
width enhancement ora factors and theory. This is not su
prising as the latter involves a ratio of two differential qua
tities, the derivatives of the real and imaginary parts of
dielectric susceptibility, making this quantity very sensiti
to small changes in the gain or refractive index. This op
problem has just been solved by combining full band str
ture and many-body calculations which quantitatively
clude the nonresonant unconfined barrier states in additio
03622
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the confined well states@6#. With this result, we are now in a
position to design a QW semiconductor amplifier and la
from the ground up, starting at the same point as the m
rials grower.

The electric and the polarization fields in a Fabry-Pe´rot
cavity can be decomposed into a sum of forward and ba
ward propagating fields,

E5E1ei (Kz2Vct)1E2ei (2Kz2Vct)1c.c.,

P5P1ei (Kz2Vct)1P2ei (2Kz2Vct)1c.c.,

whereK5Vcnb /c is the optical wave vector in the medium
of background indexnb , with c being the speed of light in
the vacuum, and thez axis is perpendicular to the two mir
rors of the Fabry-Pe´rot cavity. The index1 designates the
forward field, the index2 designates the backward field, an
c.c. refers to the complex conjugated quantity.

The effective Bloch equations generalized to the case
counterpropagating waves are@17#

]E6

]t
6

c

ng

]E6

]z
5

ic

2ng
H 1

K
¹2E61KGFx0~N!E61

P6

e0eb
G J ,

]P6

]t
5$2G0~N!1 i @d02d~N!#%P62 i e0ebA~N!E6,

]N

]t
5DN¹2N2gnN1

hJ

ew
1

i

4\
$e0eb@x0* ~N!2x0~N!#

3~ uE1u21uE2u2!1P1* E12P1E1*

1P2* E22P2E2* %,

whereng is the group index,G the confinement factor, the
operator¹2 represents

¹25
]2

]x2
1

]2

]y2
,

andDN is the diffusion constant of the carrier diffusion ter
in the lateral directionsx andy. The parameterh, J, e, andw
are, respectively, the quantum efficiency, pumping curre
electron charge, and active region thickness. * designs
complex conjugated quantity. When describing edge emitt
lasers the transverse Laplacian operator is replaced
]2/]x2.

II. MEAN-FIELD APPROXIMATION

The derivation of the mean-field model from the fu
counterpropagating effective Bloch equations is presente
Appendices A and B. Here we summarize the key resu
The derivation consists first in introducing a transformati
of the counterpropagating optical field envelops in order
obtain new field amplitudes obeying standard ideal mir
boundary conditions~Appendix A!. By unfolding the cavity
it becomes possible to introduce a Fourier longitudinal mo
decomposition. The previous transformation needs the in
duction of a mean reflectivityR defined as the square root o
the product of the two reflectivitiesR1 andR2 of both mir-
rors. Extending the procedure for a ring cavity@18#, we ob-
tain a coupled mode decomposition~Appendix B!.
1-3
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The mean-field, single-longitudinal mode, model equ
tions read

]E

]t
52

cu ln Ru
2ngL

E1
ic

2ng
H 1

K
¹2E1KGFx0~N!E1

P

e0eb
G J ,

~2!

]P

]t
5$2G0~N!1 i @d02d~N!#%P2 i e0ebA~N!E, ~3!

]N

]t
5DN¹2N2gn~N2N0!1

i

4\

12R2

Ru ln Ru $e0eb@x0~N!*

2x0~N!#uEu21P* E2PE* %.

This system of equations will form the basis for the deriv
tion of the semiconductor laser complex Swift-Hohenbe
equation in the following sections. The physics of the la
gain material is contained in the single pole model fits a
these capture density dependent gain bandwidth varia
peak gain shift, low-density absorption, and variation of
effectivea-factor spectrum. We note here also that this s
tem of equations allows us to consider realistic semicond
tor laser devices that have very different facet reflectivities
would be the case with lasers having AR- and HR-coa
facets. The usual mean-field limit corresponds to the m
reflectivity R→1 as would be the case for low-powe
VCSELs. High-power wide-aperture vertical external cav
semiconductor lasers~VECSELs!, on the other hand, contai
multiple quantum well stacks to increase the single pass
and they typically can accommodate facet losses sig
cantly less than unity. The geometric cavity factor~depen-
dent onR) will then be expected to modify the stimulate
emission term on the right-hand side of the carrier den
equation.

The electric field and carrier density evolution equatio
are close to the system obtained in the case of a lossy s
conductor laser@19#. The mean-field model in Ref.@19# has
been compared to a full counterpropagating wave code
showed good agreement.

As we will be interested in the derivation of an amplitu
description valid near threshold, we will use linear appro
mations to the background susceptibilityx0(N), the strength
of the LorentzianA(N), the bandwidth of the spectrum
G0(N), and the gain peak shift with the densityd(N). These
quantities will be expanded around a threshold valueNc of
the injected carrier densityN0. These assumptions are jus
fied by the observation that the carrier density remains
proximately clamped near its threshold value above las
threshold. Note that the carrier density itself may be stron
nonuniform along the device but what we are referring
here is thez-averaged density. We need first to determine
threshold carrier densityNc around which to expand th
above functions.
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III. APPROXIMATION OF THE MEAN-FIELD EFFECTIVE
BLOCH EQUATIONS

A. Linear stability analysis

Below threshold, the solution of the MFEBE is the no
lasing solutionE505P andN5N0. When the injected car-
rier densityN0 reaches the threshold carrier densityNc , the
nonlasing solution is unstable and an instability of wave v
tor qW and of frequencyv can develop. This instability is
sought in the form

E5Ē ei (qxxW1qyyW2vt),

P5 P̄ ei (qxxW1qyyW2vt),

N5N01N̄,

whereĒ, P̄, andN̄ are constants. EliminatingP̄ from Eqs.
~2! and ~3! we deduce that the electric field satisfies

2 ivĒ52kĒ1
ic

2ng
F 1

K
~2q2!Ē1KGx~N0 ,v!ĒG , ~4!

wherek5cu ln Ru/2ngL @Eq. ~A4! of Appendix A#. We intro-
duce the modal gainG defined by

G~N0 ,v!52
cKG

2ng
x9~N0 ,v!

5
cKG

2ng
H A~N0!G0~N0!

G0~N0!21@v1d02d~N0!#2

2x09~N0!J ,

using the Lorentzian approximation for the susceptibil
@Eq. ~1!#. We also define the function

f ~N0 ,v!5v1
cKG

2ng
H x08~N0!

1
A~N0!@v1d02d~N0!#

G0~N0!21@v1d02d~N0!#2J .

Then introducing the real partx8 and the imaginary partx9
of the susceptibility, the real part and imaginary part of E
~4! read, respectively,

G~N0 ,v!5k, ~5!

c

2ngK
q25 f ~N0 ,v!. ~6!

Equation~5! defines the threshold at which the laser tur
on: the threshold is reached when the amplification of
electric field measured by the gain balances the attenua
of the electric field due to the lossesk. This is achieved
when the pump density reaches the valueN05N0c . The sec-
1-4
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ond equation is the generalization of the frequency pull
condition extended to a wide-aperture laser.

Once the fitting functions are tabulated for a particu
QW gain medium, the lasing threshold can be determin
The threshold pump carrier densityN0c is determined from
the simultaneous solution of these two equations. The thr
old for a plane wave or transverse spatially homogene
mode laser is obtained by settinguqu50. For a GaAs laser
the coefficientsx0(N), A(N), G0(N), andd(N) involved in
the Lorentzian approximation of the susceptibility have be
calculated as rational functions versus the carrier densitN
@19#. Using these expressions we can calculate explicitly
gain. In a characteristic Fabry-Pe´rot cavity of length L
5200 mm and of mean reflectivityR530%, the evolution
of the gainG(N0 ,v) when the frequencyv varies is repre-
sented in Fig. 1 for values of the injected carrier densityN0
varying in the range@131024 m23,431024 m23#. The
lossesk51.96331012 rad s21 are represented as a horizo
tal line. The frequencyv is a detuning relative to an absolu
frequency~or energy of 1.42 eV!. The latter is chosen to
match the peak of the Lorentzian fit to the absolute f
quency location of the peak gain of bulk GaAs at the thre
old density. Finite values ofv correspond to frequency pull
ing relative to this absolute value.

WhenN0 is fixed,G(N0 ,v) presents a maximum locate
in the frequencyvmax(N0)5d(N0)2d0. The associated
maximum value ofG(N0 ,v) is

Gmax~N0!5
cKG

2ng
F A~N0!

G0~N0!
2x09~N0!G . ~7!

The threshold is reached when the equality, Eq.~5!, is satis-
fied and thus at least whenGmax(N0)>k . We see in Fig. 1
that for both the injected carrier density valuesN051
31024 m23 andN05231024 m23 the gain is always lower
than the losses and no frequency can satisfy Eq.~5!. On the
contrary, for the injected carrier density valuesN0 equal to or
larger than 331024 m23 a range of frequencies for which th

FIG. 1. Variations of the Lorentzian approximation of the ga
(rad s21) vs the frequencyv (rad s21) for several values of the
injected carrier densityN0 (m23) (L5200 mm, R530%, nb

53.6, ng54.6, G50.25, Vc51.42 eV, h50.95, gn52
31029 s21, DN518310212 m2 s21, w51028 m).
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gain is larger than the losses exists. In the caseR530%, the
threshold carrier density isNc52.0931024 m23 and the cor-
responding perturbation wave number, deduced from Eq.~6!,
is equal toqc51.202mm21.

We have solved Eqs.~5! and ~6! for various values ofR
for the same laser of lengthL5200 mm as considered in Fig
1. The critical valueqc of the wave number is represented
Fig. 2 versusR. Corresponding values ofNc and ofvc ver-
susR are drawn on Figs. 3 and 4. We see in Fig. 2 that th
exists a sharp transition from finite off axis to plane wa
emission at lasing threshold as the mean reflectivityR ex-
ceeds a finite value. The transition fromqcÞ0 to qc50 oc-
curs for the mirror reflectivity valueR50.326. Inspection of
Fig. 3 shows that the carrier density decreases with incre
ing reflectivity R. At the valueR50.326, the normalized
critical densityNc52.09. This is the point at which pea
gain in Fig. 2 moves from positive to negative detunin
Therefore for reflectivities belowR50.326, the laser emits

FIG. 2. Critical wave numberqc ~in mm21) vs the mean reflec-
tivity R.

FIG. 3. Critical injected carrier densityNc (31024 m23) vs the
mean reflectivityR.
1-5
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in an off-axis mode at threshold while for higher reflectiv
ties, it emits in a quasi-plane-wave~fundamental! mode@20#.

1. Case of a positive critical wave number

For small values of the mean mirror reflectivityR
,0.326, the threshold carrier densityNc is found to satisfy

Gmax~Nc!5k. ~8!

Therefore we have an exact balance between the maxim
of the injected energy in the laser cavity and the losses on
mirrors. The critical frequency is

vc5vmax~Nc!5d~Nc!2d0 , ~9!

while qc is deduced from Eq.~6!.

FIG. 4. Critical frequencyvc (rad s21) vs the mean reflectivity
R.
th
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e
n

s
l
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2. Case of a zero critical wave number

For R.0.326, we obtainqc50, while Eqs.~8! and~9! no
longer apply. The relation betweenNc andvc is more com-
plicated than previously and will be detailed later with no
dimensional variables~Sec. III C!. This is obvious when
looking at Fig. 4: the curve presents a slope break inR
50.326, and the critical frequency remains nearly const
for R.0.326. For the particular caseR50.45 we findNc
51.89 1024 m23 andvc520.50931013 rad s21.

B. Simplified mean-field effective Bloch equations

Having determined the threshold carrier density we
able to introduce linear approximations of the Lorentzi
coefficients, defined around the value of the injected car
density Nc . Noting with a single index the values of th
coefficients defining the Lorentzian approximation of t
susceptibility evaluated atN5Nc we can write

A~N!5A11A2~N2Nc!,

x0~N!5x11x2~N2Nc!,

G0~N!5G11G2~N2Nc!,

d~N!5d11d2~N2Nc!.

Note that the coefficientsAi , x i , G i , andd i for i 51,2 are
not exactly the ones defined in Appendix B. We have cho
not to complicate notation. These expansions are valid o
close to threshold, whenN0 and N are close toNc . We
introduce the new carrier densityN85N2N0, and the cor-
rected imaginary part of the background susceptibilityr1

5x1912ngk/cKG. The MFEBE take the form
]E

]t
5

ic

2ng
H 1

K
¹2E1KGF P

e0eb
1@x181 ir11x2~N02Nc!#E1x2N8EG J ,

]P

]t
52@G11 i ~d12d0!1~G21 id2!~N02Nc!1~G21 id2!N8#P2 i e0eb$@A11A2~N02Nc!#E1N8E%,

]N8

]t
5DN¹2N82gnN81

i

4\

12R2

Ru ln Ru $22i e0eb@x191x29~N02Nc!1x29N8#uEu21P* E2PE* %.
ch

s

ey
orm

m
-

r1 represents the total loss of energy in the cavity:
loss due to the interaction between the light and the med
proportional to the imaginary part of the susceptibil
x195x9(Nc) and the loss through the mirrors of th
Fabry-Pe´rot cavity proportional to the logarithm of the mea
reflectivity R. The variable changeN85N2N0 is chosen
instead of the changeN85N2Nc , because it introduce
the differenceN02Nc which will be used as a contro
parameter.
e
m

These equations have a form close to the Maxwell-Blo
equations which describe a two-level laser@21#. Starting
from the Maxwell-Bloch equation for two-level laser
written in complex Lorentz notation@22#, these equations
were proved to be interesting for laser modeling since th
can be reduced to order parameter descriptions in the f
of Swift-Hohenberg equations@10,11#. The MFEBE may
also be written in complex Lorenz notation with a for
close to the Maxwell-Bloch equations, by making the follow
ing change of variables:
1-6
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t85G1t,

E5 iG1A 2\Ru ln Ru

e0ebA2~12R2!
eisdte,

P5G1r1A2\Ru ln Rue0eb

A2~12R2!
eisdtp,

N52
r1G1

A2
n,

wheres5cKGr1 /2ngG1 andd5x18/r1. The MFEBE then
read, suppressing the prime of the new timet8,

]e

]t
5 ia¹2e1s@p2e1 i ~ j 1 ik !~r 2r c2n!e#,

]p

]t
52@11 ih1~u1 iv !~r 2r c2n!#p1~r 2n!e,

~10!

]n

]t
52bn1c¹2n1

1

2
~e* p1ep* !

2@ f 1k~r 2r c2n!#ueu2,

where the coefficients are defined as

a5
c

2ngKG1
, u1 iv5

~G21 id2!r1

A2
,

V5
d12d0

G1
, r 5

A11A2~N02Nc!

r1G1
,

d1 i f 5
x1

r1
, b5

gn

G1
,

j 1 ik5
x2G1

A2
, c5

DN

G1
.

We have also introduced the new detuningh5V1sd and
the threshold valuer c of the pumping parameter, defined asr
evaluated atN05Nc ,

r c5
A1

r1G1
. ~11!

This system is called the simplified mean-field effecti
Bloch equations~SMFEBE!, since the fitting functions in-
volved in the microscopic semiconductor response have b
reduced to linear expansions.

If we compare this linearized system to the Maxwe
Bloch equations, we see the following differences: first of
some new complex terms appear, essentially linked to
Lorentzian approximation of the susceptibility. (d1 i f ) and
( j 1 ik) represent, respectively, the constant partx1 and the
derivative with respect to the carrier densityx2 of the back-
03622
en

ll
e

ground susceptibilityx0, written in a nondimensional form
u andv represent the derivatives with respect to the car
density, respectively, of the bandwidth of the spectrum~term
G2) and of the gain peak shift with the density~term d2).
The last new term is the diffusion of the carrier densityc¹2n
appearing in the equation for the evolution of the carr
density. It is interesting to notice that the Maxwell-Bloc
equations can be exactly recovered from this set of equat
by setting the new parametersc, d, f, j, k, u, andv, to zero.
As in the Maxwell-Bloch model, the pumping parameterr is
still proportional to the injected current and therefore toN0,
but also depends on the strength of the Lorentzian. Com
ing this system to the Maxwell-Bloch equations, we see t
the temporal evolution of the electric and polarization fie
and the carrier density depends on the pumping param
for a semiconductor laser, whereas only the temporal ev
tion of the polarization field is depending on the pumpi
parameter in the Maxwell-Bloch model. This property w
complicate the determination of the lasing threshold of
simplified MFEBE: whereas the threshold was obtained
plicity as a function of the perturbation wave number in t
case of the Maxwell-Bloch model@10,11#, the threshold will
be found as a root of a polynomial.

C. Values of the dimensionless critical parametersr c and qc

When studying the lasing threshold we encountered
situations according to the value of the losses in the la
measured byR: qcÞ0 or qc50. In both situations we will
now expressr c andqc in terms of the coefficients appearin
in the SMFEBE.

1. Case qcÅ0

In this first situation the threshold corresponds to an ex
balance between the maximum of the gain and the los
The maximum of the gain is located at the critical frequen
vc5d12d0 @Eq. ~9!#, and attains the value@Eqs.~7! and~8!#

k5
cKG

2ng
S A1

G1
2x19D .

Therefore using Eq. ~11! and the relation r15x19
12ngk/cKG we find that the critical pumping parameter
r c51. The critical perturbation wave numberqc is defined,
using Eq.~6!, by the relation

c

2ngK
qc

25 f ~Nc ,vc!5d12d01
ckGx18

2ng
.

Dividing by G1 and defining the new effective detuning

h5
d12d0

G1
1

ckGx18

2ngG1
, ~12!

we are led to the relationaqc
25h. This parabolic law is

consistent with the behavior ofqc versusR for R,0.326
~Fig. 2!.
1-7
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2. Case qcÄ0

These results are valid as long as the detuningh is posi-
tive, sinceqc

25h/a. If h<0 we are in the case of a plan
wave laserqc50. Introducing the dimensionless frequen
x5(vc1d02d1)/G1, the energy balance Eq.~5!, and the
dispersion relation Eq.~6! evaluated atq50 and divided by
G1 read

A1

G1

1

11x2
5r1 , ~13!

05x1
d12d0

G1
1

ckG

2ngG1
S A1

G1

x

11x2
1x18D . ~14!

The critical pumping parameter@Eq. ~11!# can be expresse
as a function of the dimensionless frequency thanks to
~13!: r c511x2. Last using the value of the detuning@Eq.
~12!#, the value of the parameters and Eq.~13!, Eq. ~14!
simply becomes 05x(11s)1h. Thusr c511(h/11s)2.

In the case of a two-level laser described by the Maxw
Bloch equations@10,11#, the same results were found exce
that the square of the perturbation wave number was lin
to the detuningV instead of the new detuningh. It was
concluded thatV was a control parameter leading to diffe
ent type of bifurcation of the nonlasing solution abo
threshold according to the sign ofV. For a semiconducto
laser,h is the effective control parameter. For positive valu
of the detuning, the critical pumping parameter isr c51 and
the critical perturbation wave number isqc56Ah/a,
whereas for negative values ofh, r c511(h/11s)2 and
qc50. In the following paragraph we will be interested
the behavior of the laser when the wave number is sligh
above its critical value and thus we will determine the ne
tral curves, i.e., the variations of the pumping parameterr (q)
versusq.

IV. NEUTRAL CURVES

We look for a perturbation of the nonlasing solutione
505p5n of Eq. ~10! in the form (e,p)
5(ē,p̄) ei (qxx1qyy)1lt andn5n̄, whereqW 5qxxW1qyyW is the
perturbation wave vector andl is the complex tempora
growth rate. The amplitudesē, p̄, andn̄ are considered sma
in order to be able to linearize Eq.~10!. We decompose the
growth rate in the forml5s1 iv wheres is the real tempo-
ral growth rate andv the frequency of the perturbation
Using Eq. ~10!, the amplitudesē and p̄ are found to be
solution of the system

@s1s1 i ~v1aq2!2 is~ j 1 i k !~r 2r c!#ē5s p̄,

$@s111 i ~v1h!1~u1 iv !~r 2r c!# p̄%5rē, ~15!

whereq5Aqx
21qy

2 is the modulus of the perturbation wav
number in the general case orq5qx in the one-dimensiona
case.
03622
q.

l-
t
d

s

y
-

A. Dispersion relation

The determinant of the system Eq.~15! must vanish to get
a nontrivial solution. Introducing the following functions de
pending on the detuningh ~through the critical pumping
parameterr c), and on the pumping parameterr:

J~h,r !5s j ~r 2r c!,

K~h,r !5s@11k~r 2r c!#, ~16!

U~h,r !511u~r 2r c!,

V~h,r !5v~r 2r c!,

the cancelation of the determinant leads to the dispers
relation

@s1K1 i ~v1aq22J!#@s1U1 i ~v1h1V!#5sr .

~17!

Taking the real and imaginary parts of Eq.~17! and elimi-
nating the frequency leads to a transcendental equation
the threshold value of the pumping parameterr must satisfy

sr 5~s1K !~s1U !F11S h2aq21J1V

2s1K1U D 2G . ~18!

At threshold, the real parts of the temporal growth ratel
vanishes and the pumping parameter becomes a solutio

sr 5KUF11S h2aq21J1V

K1U D 2G , ~19!

whereas the frequency is linked to the pumping paramete
the relation

v5US h2aq21J1V

K1U D2h2V. ~20!

Equation~19! may be written as an order four polynomial
the r variable. Therefore a numerical procedure is necess
in order to draw the neutral curves. However, results c
cerning the threshold can of course be easily recovered:
threshold corresponds tor 5r c and q5qc , and introducing
these values in Eq.~19! leads to the critical value of the
pumping parameterr c511(h2aqc

2/11s)2, and Eq.~20!
yields the critical value of the frequencyvc52(sh
1aqc

2/11s), where the critical perturbation wave numb
qc satisfiesqc50 if h,0 and qc

25h/a if h.0. Above
threshold (r .r c), linearization of Eq.~10! is no longer pos-
sible because the perturbationse, p, andn become large, and
nonlinear terms must be taken into account. Using an am
tude equation method, simpler nonlinear equations can
deduced. To achieve this goal the typical temporal and s
tial scales of the variables involved in the amplitude equat
need first to be determined. This can be achieved by stud
the local behavior of the pumping parameter versus the
tuning h and versus the wave numberq when this latter
parameter varies around its critical valueqc .
1-8
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In the case of a two-level laser, since the dispersion r
tion was found analytically, the deviation form thresholdr
2r c was obtained to vary explicitely like (q2qc)

2 close to
threshold when the detuning is different from zero, and
vary like (q2qc)

4 when V50 @10,11#. Thus it was con-
cluded that the slow space variables must depend onr
2r c)

1/4 when the detuning is taken close to zero. In our ca
the link betweenr andq is not explicit, and we need to draw
the neutral curves in order to find the powern such thatr
2r c varies like (q2qc)

n around threshold. Therefore in th
following paragraph we will determine the changes in t
shape of the neutral curvesr (q) solution of Eq.~19! versus
the perturbation wave number when the detuning varies.

B. Construction of the neutral curves

Equation 19 is invariant under the transformationq→
2q so the solutionsr (q) are even functions, and we will jus
give the behavior of the neutral curves for positive values
the perturbation wave number.

1. Case of a positive detuning

In the case of a positive detuning, the critical pumpi
parameter takes the valuer c51. Introducing this value in
the definition of the four intermediate functions defined
Eq. ~16! and solving the dispersion relation Eq.~19!, the
neutral curvesr (q) can be calculated. The value of the c
efficient a of the diffraction term in Eq.~10! can be taken
equal to 1: indeed the spatial coordinatesx andy in Eq. ~10!
are dimensional variables. Introducing the nondimensio
spatial coordinatesx̃ and ỹ defined byx5 l x̃ and y5 l ỹ
where l is a reference length, the evolution equation of t
electric field in the system Eq.~10! can be rewritten in a
nondimensional form. The new diffraction coefficientã
5a/ l 2 is equal to 1 if we choose a reference length equa

FIG. 5. Neutral curver (q) for a detuningh50.5.
03622
a-

o

(
e,

f

al

e

o

l 5Aa. The other values of the parameters in the simplifi
MFEBE are deduced from Ref.@15#. In the case of a 200mm
long laser corresponding to a threshold carrier densityNc
52.0931024 m23, these values ares50.016, j 5
20.0041,k521.64, u51.54, andv52.18.

Figure 5 shows the neutral curve in the case of the va
of the detuningh50.5. It appears that for each value of th
wave number, Eq.~19! admits two real roots, and two com
plex roots. The two complex roots and one real root do
correspond to physical behavior. The real root with t
smallest magnitude is independent of the perturbation w
numberq and is a nonphysical artifact of the linear approx
mation of the coefficients appearing in the Lorentzian a
proximation to the susceptibility. We will only discuss th
behavior of the real physical root. This rootr (q) has a mini-
mum located atq50.71 with valuer 51.

We have also studied the variations of the sign of the r
temporal growth rates whenr andq are varying, solving Eq.
~18!. The usual situation in linear stability analysis is reco
ered: for a fixed value of the perturbation wave numb
when the value of the pumping parameterr is below the
critical value r (q), the laser is stable and whenr exceeds
r (q) the perturbation of the nonlasing solution becomes
stable. Domains of stability and unstability are indicated
Fig. 5.

2. Case of a negative detuning

In the caseh,0 the critical value of the pumping param
eter is equal tor c511(h/11s)2. When the detuning is
taken equal toh520.5 and thusr c51.24, the neutral curves
take the form represented in Fig. 6. The minimum of the r
r (q) is now located at the wave numberqc50 and corre-
sponds to the critical pumping parameterr (0)5r c51.24.

V. WEAKLY NONLINEAR ANALYSIS

We will now derive a Swift-Hohenberg equation from th
simplified MFEBE. The preceding paragraph has confirm

FIG. 6. Neutral curve for a negative detuningh520.5.
1-9



th
th

a
m
w
ic
is
a

e

e
r
rit

a
be

av

r

o

tia

t

e

t

th
io

t

ow-
sions

nd

ike
re

the

s at

q.
ical

al-
but
efs.
if

h
pa-

for

e-

J.-F. MERCIER AND J. V. MOLONEY PHYSICAL REVIEW E66, 036221 ~2002!
that the nature of the bifurcation changes depending on
sign of the detuning. In order to capture the behavior of
simplified MFEBE equations for both signs ofh, we as-
sumed the detuning small and a small parametere is intro-
duced. Then we defineh5e h1 and look for solutions
(e,p,n) in the form of a power series expansion in the sm
parametere. The laser variables also depend on slow te
poral and spatial scales that we will determine in the follo
ing paragraphs. As in the case of a two-level laser, analyt
results are necessary to derive an amplitude equation: th
achieved by developing the dispersion relation as an exp
sion in the small quantityq2qc .

A. Determination of the slow time and space variables

For h50, the threshold is located at the wave numb
qc50, in the critical pumping parameterr c51, and is asso-
ciated with the frequencyvc50. To calculate the slow spac
scales we need to determine how the pumping parameter is
varying versus the perturbation wave number about its c
cal valuer c51. Keeping the detuning equal toh50 , if we
let the perturbation wave number vary a little from its critic
value, namely,q small, then the pumping parameter may
written asr 511r where the introduced parameterr is also
small. From the dispersion relation Eq.~19! we obtain at the
lowest order in the deviation from thresholdr and in the
small wave numberq a link betweenr andq,

~12k2u!r1O~r2!5F2aq21~s j 1v !r

s11 G2

@11O~r!#,

~21!

whereO(r) designs a function of orderr. Looking for the
parameterr expressed as an expansion in the small w
numberq: r5r1q1r2q21•••, and solving Eq.~21! at each
order in the small wave numberq, we find thatr1505r2
5r3, and thus that the deviationr of the pumping paramete
from its critical value must vary likeq4: (12k2u)(r 21)
5(a/s11)2 q4. We deduce that above threshold a band
wave vectorsq of width (r 21)1/4 centered roundqc50 is
experiencing growth. The right scaling for the new spa
variables X and Y is then X5(r 21)1/4 x and Y5(r
21)1/4 y. If we consider now a detuning slightly differen
from its critical value, namely,h small, then Eq.~21! is
replaced at order one inr and two inq by the relation

~12k2u!r1O~r2!5Fh2aq21~s j 1v !r

s11 G2

@11O~r!#.

~22!

h is considered as a small parameter and thus can be
pressed as an expansion in the small wave numberq: h
5h1q1h2q21•••. In order to keep all of the relevan
terms on the right-hand side of Eq.~22! and thus obtain a
Swift-Hohenberg equation that takes into account all
physical parameters simultaneously, namely, the diffus
term ia¹2e and the detuningh, we must consider thath is
of orderq2. Therefore we imposeh150 and we deduce tha
h2 must satisfy (12k2u)r45(h22a/s11)2. Sinceh var-
ies like (r 21)1/2, if the order of magnitude ofh is callede,
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we must chooser 511e2, and take X5Ae x, and Y
5Ae y for the spatial coordinates.

We need also to determinate the slow time scales. Foll
ing the same procedure as above, we can find the expres
of the real temporal growth rates and of the frequencyv as
expansions in the small wave numberq. Starting from the
dispersion relations Eq.~18! and Eq.~20! and looking for
values of the parametersr, q, h, s, and v close to their
critical values, we obtain that the temporal growth rate a
the frequency are linked tor andh through the relations

~s11!s45sF ~12k2u!r42S h22a

s11 D 2G , ~23!

~s11!v252@a1sh2#. ~24!

Since the frequency varies at the first order likeq25O(e)
@Eq. ~24!# and since the real temporal growth rate varies l
q45O(e2) @Eq. ~23!#, the slow time scales necessary a
T15e t andT25e2 t.

B. Reduction to a Swift-Hohenberg equation

The slow time and space scales being determined,
calculations to derive a Swift-Hohenberg~SH! equation can
be performed and are presented in Appendix C. It read
order three ine,

~s11!
]c

]t
5sF ~r 21!~12k2u!c2S h1a¹2

s11 D 2

3c2~11 ia!
1

b
uc2ucG1 i ~a¹22sh!c,

~25!

where the obtained alpha coefficient is defined as

a5
j 2v

12k2u
. ~26!

To confirm that Eq.~25! models the same phenomena as E
~10!, we have compared these two equations: ident
threshold values and traveling wave solutions are found. C
culations are not presented here for the sake of brevity,
the procedure followed is analogous to the one used in R
@10# and @11#. Moreover, we have already mentioned that
we take all the parametersc,d, f ,g,h, j ,k,u,v equal to zero,
the simplified MFEBE reduce exactly to the Maxwell-Bloc
equations describing a two-level laser. When all of these
rameters vanish, the detuningh5V1sd becomes simplyV
and we recover exactly the Swift-Hohenberg equation
two-level lasers.

C. Characterization of the linewidth enhancement factora

Using an intuitive derivation of the linewidth enhanc
ment factora @8#, the following formula was obtained:
1-10
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a52

]x8

]N

]x9

]N

. ~27!

As a consequence of the Lorentzian approximation of
susceptibilityx of the semiconductor medium@Eq. ~1!#, the
linewidth enhancement factor deduced from Henry’s form
Eq. ~27! reads

a5

x28G12d2

A1

G1

A22x29G12G2

A1

G1

.

However, using the definitionsj 1 ik5x2G1 /A2 and u1 iv
5(G21 id2)r1 /A2, the deduced value ofa from Eq. ~26! is

a5
x28G12d2r1

A22x29G12G2r1

.

Then the propertyA1 /G15r1 valid for small values of the
detuning~when r c.1) leads to the same expression for t
a factor as the expression deduced from Henry’s formu
Therefore our method is consistent with Henry’s approach
laser emission, and provides a way to calculate explicitly
coefficient a. Some values of thea factor for various
lengths of laser and a mean reflectivity of the laser cav
R530% are listed in Table I. These values are arounda5
22, which is consistent with experimental measurements

D. Generalized equations in the stiff limit „b\0…

In the stiff limit of the Maxwell-Bloch equations, the der
vation of a Swift-Hohenberg equation leads to two coup
order parameter equations@10,11#. This limit corresponds to
a small decay rate of the population inversion and be
describes a class B laser than the single SH equation de
by consideringb finite. We have already mentioned that th
simplified MFEBE have a form close to the form of th
Maxwell-Bloch equations, and thus we can expect the s
plified MFEBE to also give rise to coupled complex Swi
Hohenberg equations.

We need to repeat the procedure of Appendix C, tak
into account the fact thatb is small. The derivation of the
coupled Swift-Hohenberg equations is given in Appendix
They read at order four ine,

~s11!
]c

]t
5sH @ i ~ j 1 ik !112~u1 iv !#@~r 21!c2nc#

2S h1a¹2

s11 D 2

cJ 1 i ~a¹22sh!c,

]n

]t
5c¹2n2bn1~12 f !ucu2.
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Here again we have compared the instability thresholds
the traveling wave solutions of the simplified MFEBE and
the coupled SH equations in order to check if both a
proaches describe the same physical problem. The sam
sults are obtained, confirming that the reduction of the s
plified MFEBE to the coupled SH equations is valid.

It is possible to obtain a system close to the coup
Swift-Hohenberg equations derived from the two-lev
Maxwell-Bloch equations, by introducing the change of o
der parameters

n→ n

~12k2u!
,

c→ eis[( r 21)(12k2u)/(11s)]

A~12k2u!~12 f !
c.

Then the coupled Swift-Hohenberg equations take the fo

~s11!
]c

]t
5sF ~r 21!~12k2u!c2S h1a¹2

s11 D 2

3c2~11 ia!ncG1 i ~a¹22sh!c,

]n

]t
5c¹2n2bn1ucu2.

If we take the semiconductor coefficientsc, d1 i f , j 1 ik,
and u1 iv equal to zero we recover exactly the coupl
Swift-Hohenberg equations in the case of a two-level las
The model chosen in Ref.@12# corresponds toc50 ~no dif-
fusion of the carrier density was considered! andk1u50.

VI. CONCLUSION

In this paper we presented the derivation of a system
approach for describing optical propagation in wide apert
edge and surface emitting semiconductor lasers. Inputs to
model include rigorously computed and experimentally va
dated gain and refractive index spectra parametrized by
total carrier density. The present analytic approach, base
a simple Lorentzian fit to the full semiconductor gain lin
shape, allows us to explicitly compute analytic coefficien
for the various reduced laser models. The approach descr
here could also be applied to the raw computed gain
refractive index spectra or to experimental data, if availab
The nonlinear partial differential equation model, its sing

TABLE I. Values of the coefficienta for various lengths of a
laser.

L(mm) a

100 -1.81
200 -1.98
250 -2.11
300 -2.25
1-11
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and longitudinal mode reductions include the important m
croscopic influences of peak gain shift and gain spectr
broadening with density variation. We have assumed that
temperature is fixed at room temperature in the present st
The latter restriction could be relaxed by providing gain a
refractive index tables parametrized by carrier density
temperature and by adding a heat diffusion equation. In
dition, we have obtained a reduced order-parameter equa
description of a semiconductor laser that could be used
study wide-aperture VCSEL and VECSELs. The latter ty
cally consist of multiple stacks of quantum wells and t
increased gain per unit length can accommodate significa
greater facet losses than regular VCSELs.

Using changes of variables and a single mode approxi
tion, we proved that the EBE generalized to counterpro
gating waves can be reduced to the single-longitudinal m
MFEBE. The procedure also leads to a set of coupled m
equations that describe a multilongitudinal, multilate
mode broad area semiconductor laser. This description
sents several advantages: in particular, in the sin
longitudinal mode case, only three evolution equations
stead of five are required. After having determined the las
threshold through a linear stability analysis, linear exp
sions of the parameters involved in the nonlinear coupli
were introduced, and a simplified form of the MFEBE w
established.

We then presented the derivation of order parameter e
tions in the form of complex SH equations, suited to mo
the output of a wide-aperture single-longitudinal mode se
conductor laser such as a VCSEL. The slow time and sp
scales were determined through a linear stability analysi
the simplified MFEBE and from the characterization of t
behavior of the neutral curves. Then the nonlinear analy
using power series expansions in a small parametere linked
to the distance between the pumping parameterr and its
threshold valuer c , leads to the SH equation, or the coupl
SH equations in the stiff limit. In this latter case, the mod
equations chosen in Ref.@12# in order to study the turbulenc
control in semiconductor lasers are placed on a sound f
ing. In particular, the empiricala factor introduced in Ref.
@12# comes naturally in the derivation of the SH equatio
and also agrees with Henry’s definition@8# for the linewidth
enhancementa factor.
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APPENDIX A: EVOLUTION EQUATIONS FOR THE
PERIODIC FIELD AMPLITUDES

In this appendix we will derive from the full counter
propagating field equations, governing equation for n
variables adapted to Fourier decomposition. Taking
length of the cavityL as the reference length, the bounda
conditions on the end mirrors areE15AR1 E2 in z50 and
E25AR2 E1 in z51, whereR1 andR2 are the reflectivity
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coefficients of the mirrors. Contrary to Ref.@19#, no external
injection is considered.

1. Change of variables

In the case of a unidirectional ring cavity, boundary co
ditions that involve both a time delay and a scaling of t
field amplitude are obtained@18#, preventing one from rep-
resenting the cavity field as a linear superposition of ortho
nal modal functions. In the case of a highly lossy semico
ductor laser in a Fabry-Pe´rot geometry, the same problem
faced and boundary conditions involving a scaling of t
counterpropagating electric fields are obtained@19#. In both
cases, the problem is solved by introducing a suitable tra
formation of both the space-time coordinates and the
namical variables, which allows an exact representation
the new variables as linear superpositions of orthogonal c
ity functions in the transformed frame.

We consider the transformation of the dynamical va
ables,

E8 15
1

n
e(1/2)z ln RE1,

E8 25ne2(1/2)z ln RE2,

P8 15
1

n
e(1/2)z ln RP1,

P8 25ne2(1/2)z ln RP2,

where we have introduced the mean reflectivity of the Fab
Pérot cavity R5AR1R2 and the normalization coefficientn
5R1

(1/4) . It may appear surprising thatn does not depend on
R2 since both mirrors should have symmetric influences. T
symmetry can be easily recovered by changingz in z
2(1/2) in the transformation defined just above@then n
5(R1 /R2)1/8]. The transformation chosen allows us
lighten the writings. Thanks to this transformation th
boundary conditions become symmetric in the new fram
and the new field amplitudes obey standard ideal mir
boundary conditionsE8 15E8 2 in z50 andE8 25E8 1 in
z51. The transformed equations of motion

]E6

]t
5

c

ngL F7
]E6

]z
2

u ln Ru
2

E6G
1

ic

2ng
H 1

K
¹2E61KGFx0~N!E61

P6

e0eb
G J ,

~A1!

]P6

]t
5$2G0~N!1 i @d02d~N!#%P62 i e0ebA~N!E6,

~A2!
1-12
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]N

]t
5DN¹2N2gnN1

hJ

ew
1

i

4\ H e0eb~x0* 2x0!Fn2uE1u2

3e2z ln R1
1

n2
uE2u2ez ln RG1n2~P1* E12P1E1* !

3e2z ln R1
1

n2
~P2* E22P2E2* !ez ln RJ , ~A3!

written with suppressing the primes contain both an ad
tional electric field damping term2cu ln Ru/2ngLE6 as soon
as both mirror are not perfect (RÞ1) contrary to the original
set, and also an explicit spatial dependence through the
ponential factorse2z ln R andez ln R.

2. Introduction of periodic variables

The electric field does not obey periodic boundary con
tions, and a decomposition of Fourier type cannot be in
duced. To solve this problem, we introduce a new elec
field Ẽ(x,y,z,t) which will be periodic. It is defined on a
domain of twice the width of the Fabry-Pe´rot cavity and is
equal to the forward electric field for positive values of t
longitudinal coordinate Ẽ(x,y,z,t)5E1(x,y,z,t) if z
P@0,1# and equal to the symmetric of the backward elec
field with respect to the planez50 for negative values ofz:
Ẽ(x,y,z,t)5E2(x,y,2z,t) if zP@21,0#. This new electric
field is a two-periodic function. The same transformation
applied to deduce the new polarization fieldP̃ from the ini-
tial polarization fieldsP6. Because the carrier density is
scalar instead of a vector, the link between the new car
densityÑ andN is different from the previous definitions. I
is simply defined asÑ(x,y,z,t)5N(x,y,z,t) if zP@0,1# and
Ñ(x,y,z,t)5N(x,y,2z,t) if zP@21,0#. The next step con-
sists in finding the evolution equations ofẼ, P̃, andÑ.

3. Equations for the new periodic fields

The behaviors of the electric and polarization fields
zP@21,0# are obtained by substitutingz with 2z in Eqs.
~A1! and ~A2!, and read

]Ẽ

]t
1

c

ngL

]Ẽ

]z

52kẼ1
ic

2ng
H 1

K
¹2Ẽ1KGFx0~Ñ!Ẽ1

P̃

e0eb
G J ,

] P̃

]t
5$2G0~Ñ!1 i @d02d~Ñ!#%P̃2 i e0ebA~Ñ!Ẽ,

for zP@21,1# where we have introduced the electric fie
damping coefficient

k5
cu ln Ru
2ngL

. ~A4!
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For the carrier density, complications appear because of
explicit z dependance in Eq.~A3! through the exponentia
factors. Thus no evolution equations for the carrier dens
valid on the whole rangezP@21,1# can be derived. In the
following, in order to simplify the notation thez dependence
of the variablesẼ, P̃, and Ñ will just be mentioned. We
introduce the functionf defined as

f ~z!5$e0eb@x0* „Ñ~z!…2x0„Ñ~z!…#uẼ~z!u2

1 P̃* ~z!Ẽ~z!2 P̃~z!Ẽ* ~z!%e2z ln R,

and thus the evolution equation for the carrier density ta
the simpler form

]Ñ

]t
5DN¹2Ñ2gnÑ1

hJ

ew
1

i

4\ Fn2f ~z!1
1

n2
f ~2z!G ,

~A5!

for zP@0,1#. Substitutingz with 2z in the previous equation
leads to the evolution equation for the carrier density foz
P@21,0#,

]Ñ

]t
5DN¹2Ñ2gnÑ1

hJ

ew
1

i

4\ Fn2f ~2z!1
1

n2
f ~z!G .

~A6!

These equations on the unfolded periodic domain can
very efficiently solved numerically using spectral method

APPENDIX B: MODAL DECOMPOSITION

1. General links between Fourier components

Fourier decomposition with respect to thez coordinate are
introduced,

S Ẽ~x,y,z,t !

P̃~x,y,z,t !

Ñ~x,y,z,t !
D 5 (

j 52`

`

ei (kjz2v j t)S Ẽj~x,y,t !

P̃j~x,y,t !

Ñj~x,y,t !
D ,

where the dimensionless wave numbers are selected
that kn5np, n50,61,62, . . . in order to satisfy the peri-
odic boundary conditions. The dimensional frequency of
nth mode is given by the dispersion relationvn5knc/ngL.

In order to keep on performing analytical calculation
explicit expressions of the nonlinear couplings between
electric field, the polarization field, and the carrier dens
are introduced. The nonlinear couplings appear through
carrier density dependence of the parameters involved in
Lorentzian approximation of the susceptibility. We will stud
the case of a linear dependence with respect to the ca
density of all these parameters,

x0~N!5x11x2N,

A~N!5A11A2N,
1-13
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G0~N!5G11G2N,

d~N!5d11d2N.

Using the orthogonality property*21
1 ei (kj 2kn)zdz52 d j ,n ,

whered j ,n designs the Kro¨necker delta, we obtain that th
nth Fourier componentẼn obeys the following evolution
equation:

]Ẽn

]t
52kẼn1

ic

2ng
H 1

K
¹2Ẽn

1KGFx1Ẽn1x2(
i

Ñi Ẽn2 i1
P̃n

e0eb
G J ,

and thatP̃n obey the equation

] P̃n

]t
5@2G11 i ~d02d1!# P̃n2~G21 id2!

3(
i

Ñi P̃n2 i2 i e0ebFA1Ẽn1A2(
i

Ñi Ẽn2 i G .
The form of the carrier densityÑ evolution equation de-

pends on the sign of the longitudinal coordinatez, which will
complicate the obtention of the evolution equation of thenth
Fourier components of the carrier density. By integrating
~A5! betweenz50 andz51 and Eq.~A6! betweenz521
and z50, by grouping together the terms containingf (z),
and the terms containingf (2z), and finally by introducing
the functions

I n~n,R!5E
0

1

f ~z!e2 i (knz2vnt)dz1
1

n4

3E
21

0

f ~z!e2 i (knz2vnt)dz,

Jn~n,R!5E
0

1

f ~2z!e2 i (knz2vnt)dz1n4

3E
21

0

f ~2z!e2 i (knz2vnt)dz,

we obtain for all integern,

2S ]Ñn

]t
2 ivnÑnD

5E
21

1 S DN¹2Ñ2gnÑ1
hJ

ewDe2 i (knz2vnt)dz

1
i

4\ Fn2I n~n,R!1
Jn~n,R!

n2 G .

The functions (1/A2)eiknz wherekn5np with n are or-
thonormal only if the scalar product consists in an integrat
on the whole intervalzP@21,1#. Therefore to use the or
03622
.

n

thogonality property, we need to make appear integrations
the rangezP@21,1# in the expressions of the function
I n(n,R) andJn(n,R), for example by writing

I n~n,R!5E
21

1

f ~z!e2 i (knz2vnt) dz1S 1

n4
21D Kn~R!,

Jn~n,R!5E
21

1

f ~2z!e2 i (knz2vnt) dz1~n421!Ln~R!,

where we have introduced the functions

Kn~R!5E
21

0

f ~z!e2 i (knz2vnt)dz,

Ln~R!5E
21

0

f ~2z!e2 i (knz2vnt)dz.

Like in the study of a ring cavity@18#, we are led to intro-
duce the mode-mode coupling coefficients in order to cal
late all the scalar products involved between the functiof
and the exponential factorse2 i (knz2vnt),

Gp5E
21

1

eikpze2z ln Rdz5
eikp

R

12R2

ikp2 ln R
,

Vp5E
21

1

eikpzez ln Rdz5
eikp

R

12R2

~2 ikp2 ln R!
.

Two mode-mode coupling coefficients have to be defin
because we have to take into account forward and backw
electric and polarization fields.

Using once again the Fourier expansions for the variab
Ẽ, P̃, and Ñ and the orthogonality property we obtain th
the nth Fourier componentÑn obeys

2S ]Ñn

]t
2 ivnÑnD 52S DN¹2Ñn2gnÑn1

hJ

ew
d0,nD

1
i

4\ Fn2I n~n,R!1
1

n2
Jn~n,R!G ,

~B1!

where

I n~n,R!522i e0ebS x19(
i , j

Ẽi Ẽ j* G i 2 j 2ne2 iv i 2 j 2nt

1x29(
i , j ,k

Ñi Ẽj Ẽk* G i 1 j 2k2ne2 iv i 1 j 2k2ntD
1(

i , j
~ P̃i* ẼjG2 i 1 j 2ne2 iv2 i 1 j 2nt

2 P̃i Ẽj* G i 2 j 2ne2 iv i 2 j 2nt!1S 1

n4
21D Kn~R!,
1-14
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Jn~n,R!522i e0ebS x19(
i , j

Ẽi Ẽ j* V2 i 1 j 2ne2 iv i 2 j 2nt

1x29(
i , j ,k

Ñi Ẽj Ẽk* V i 2 j 1k2ne2 iv i 1 j 2k2ntD
1(

i , j
~ P̃i* ẼjV i 2 j 2ne2 iv2 i 1 j 2nt

2 P̃i Ẽj* V2 i 1 j 2ne2 iv i 2 j 2nt!1~n421!Ln~R!.

The general case leads to take into account numerous i
actions between the electric field, the polarization field, a
the carrier density. However, in the limit case of perfect
flecting walls R→1, the mode-mode coupling coefficien
reduce to delta coefficientsGp5l d0,p and Vp5l d0,p ,
wherel5(12R2)/Ru ln Ru, and the normalization coefficien
n5R1

1/4 tends toward 1. As soon asRÞ0 in order to have
finite coefficientse6z ln R ~in particular, in the case of perfec
reflecting wallsR→1), the functionf is bounded onzP
@21,1#. Therefore both the products (1/n421)Kn(R) and
(n421)Ln(R) are vanishing when the two end mirrors of th
Fabry-Pe´rot cavity are taken perfectly reflecting. Then E
~B1! simplifies in the form

2S ]Ñn

]t
2 ivnÑnD

52S DN¹2Ñn2gnÑn1
hJ

ew
d0,nD

1
il

4\ F22i e0ebS x19(
i

Ẽi Ẽi 2n* 1x29(
i , j

Ñi Ẽ j Ẽi 1 j 2n* D
1(

i
~ P̃i* Ẽi 1n2 P̃i Ẽi 2n* !22i e0eb

3S x19(
i

Ẽi Ẽi 1n* e2 iv22nt

1x29(
i , j

Ñi Ẽ j Ẽ2 i 1 j 1n* e2 iv2i 22ntD
1(

i
~ P̃i* Ẽi 2n2 P̃i Ẽi 1n* !e2 iv22ntG .

2. Main Fourier order

The evolution equations of the amplitudes labeled by
index different from zero involve nonlinear terms that alwa
include at least one amplitude labeled by an indexnÞ0.
Therefore the amplitudes labeled by an indexnÞ0 remain
equal to zero for all time if they are equal to zero at the init
time t50. This means that we just have to take into acco
the zeroth Fourier modes, which leads to
03622
er-
d
-

n

l
t

]Ẽ0

]t
52kẼ01

ic

2ng
H 1

K
¹2Ẽ01KGFx1Ẽ01x2Ñ0Ẽ0

1
P̃0

e0eb
G J ,

] P̃0

]t
5@2G11 i ~d02d1!# P̃02~G21 id2!Ñ0P̃0

2 i e0eb@A1Ẽ01A2Ñ0Ẽ0#,

]Ñ0

]t
5DN¹2Ñ02gnÑ01

hJ

ew
1

il

4\
$22i e0eb@x19uE0u2

1x29Ñ0uE0u2#1 P̃0* Ẽ02 P̃0Ẽ0* %.

Using the definition of thenth Fourier component, and in
troducing the usual mean-field quantities defined as^E6&
5*0

1E6dz, ^P6&5*0
1P6dz and ^N&5*0

1Ndz, we obtain
that the zeroth Fourier components are linked to the me
field quantities by E05(^E1&1^E2&)/2, P05(^P1&
1^P2&)/2 and N05^N&. Suppressing the zero index, w
have proved that the effective Bloch equations reduce to
mean-field model equations

]E

]t
52kE1

ic

2ng
H 1

K
¹2E1KGFx0~N!E1

P

e0eb
G J ,

]P

]t
5$2G0~N!1 i @d02d~N!#%P2 i e0ebA~N!E,

]N

]t
5DN¹2N2gn~N2N0!1

il

4\
$e0eb@x0~N!*

2x0~N!#uEu21P* E2PE* %.

Instead of keeping the external injected currentJ, we have
introduced the injected carrier densityN0 which is the par-
ticular value of the carrier density linked to the currentJ
through the relation (hJ/ew)5gnN0. Although the mean
field effective Bloch equations derived above are rigorou
valid for R→1, they also remain valid for lossy semicondu
tor lasers.

APPENDIX C: DERIVATION OF THE SEMICONDUCTOR
LASER SWIFT-HOHENBERG EQUATION

In this appendix we outline the derivation of the SH equ
tion. Beyond thresholdr ,1 no laser emission exists and th
solution of the simplified MFEBE is (e,p,n)5(0,0,0).
Slightly about threshold, at a small distancee25r 21, we
can thus expect the solution (e,p,n) to be small. We assume
that this solution is of ordere and look for solution in the
form (e,p,n)5e (e1 ,p1 ,n1)1e2(e2 ,p2 ,n2)1•••, where
the (ei ,pi ,ni)’s depend slowly on time and space.

We now plug these expressions into the simplified me
field effective Bloch equations, and identify the coefficien
of powers ofe at each order. At order one, we get
1-15
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se15sp1 ,

p15e1 ,

bn150,

which impliesn150. The solution is thene15p15c where
c is a complex variable. At order two, the simplified MFEB
yield

S ]

]T1
2 ia¹2De15s~p22e2!,

S ]

]T1
1 ih1D p15e22p2 ,

bn25
1

2
~e1* p11e1p1* !2 f ue1u2.

In terms ofc, these equations read

s~e22p2!52S ]

]T1
2 ia¹2Dc,

~p22e2!52S ]

]T1
1 ih1Dc,

bn25~12 f !ucu2.

The solvability condition for the first two equations involve
a condition onc, which will be the dynamic equation sough
for. It reads at this order

~s11!
]c

]T1
5 i ~a¹22sh1!c.

One can then choosee250 and

p252S ]

]T1
1 ih1Dc,

n25
12 f

b
ucu2.

At next order, we get

]e1

]T2
5s@p32e31 i ~ j 1 ik !~12n2!e1#,

S ]

]T1
1 ih1D p21

]p1

]T2
5e32p31~12n2!@e12~u1 iv !p1#,

bn31S ]

]T1
2c¹2Dn25

1

2
~e1* p21e1p2* !,

which reads
03622
s~e32p3!52
]c

]T2
1s i ~ j 1 ik !S 12

12 f

b
ucu2Dc,

~p32e3!52
]c

]T2
1S ]

]T1
1 ih1D 2

c

1S 12
12 f

b
ucu2D @12~u1 iv !#c,

bn352
12 f

b S ]

]T1
2c¹2D ucu2

1
ia

2~s11!
~c¹2c* 2c* ¹2c!,

and requires another solvability condition, which will giv
the behavior ofc at the time scaleT2. Using the relation

S ]

]T1
1 ih1Dc5

i

~s11!
~h11a¹2!c,

the solvability condition reads

~s11!
]c

]T2
5sF2S h11a¹2

s11 D 2

c1@ i ~ j 1 ik !112~u1 iv !#

3S 12
12 f

b
ucu2DcG .

Again we choosee350, and get forp3 andn3,

p35
1

s11 H 2S h11a¹2

s11 D 2

c1@12s i ~ j 1 ik !2~u1 iv !#

3S 12
12 f

b
ucu2DcJ ,

n35
ia

b~s11! S 1

2
1

12 f

b D ~c¹2c* 2c* ¹2c!

1
12 f

b
c¹2ucu2.

The final equation forc is obtained by collecting all the
terms and reads

~s11!
]c

]t
5~s11!Fe ]c

]T1
1e2

]c

]T2
G .

One can get rid of the small parametere by reintroducing the
original variablesx5X/Ae, y5Y/Ae, h5e h1 , r 215e2,
and redefininge c asc. This yields an equation forc of the
Swift-Hohenberg type

~s11!
]c

]t
5sH @ i ~ j 1 ik !112~u1 iv !#

3F ~r 21!c2
12 f

b
ucu2cG2S h1a¹2

s11 D 2

cJ
1 i ~a¹22sh!c.
1-16
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We can also obtain the link between the order parametec
involved in the Swift-Hohenberg equation and the elec
field e, the polarization fieldp, and the carrier densityn
appearing in the simplified MFEBE. Collecting all the term
corresponding to different powers ofe leads to

e5ee11e2e21e3e35c,

p5ep11e2p21e3p3

5c2
i

s11
~h1a¹2!c1

1

s11 H 2S h1a¹2

s11 D 2

c

1@12s i ~ j 1 ik !2~u1 iv !#S r 212
12 f

b
ucu2DcJ ,

n5e2n21e3n3

5
12 f

b
ucu21

ia

b~s11! S 1

2
1

12 f

b D
3~c¹2c* 2c* ¹2c!1

12 f

b
c¹2ucu2.

Last, introducing the new order parameter

c̃5e2 is[( r 21)(12k2u)/(s11)]atA~12k2u!~12 f ! c,

where thea coefficient is defined asa5 j 2v/12k2u, we
obtain the simplified Swift-Hohenberg equation

~s11!
]c̃

]t
5sF ~r 21!~12k2u!c̃2S h1a¹2

s11 D 2

c̃

2~11 ia!
1

b
uc̃ 2uc̃ G1 i ~a¹22sh!c̃.

APPENDIX D: DERIVATION OF THE COUPLED SH
EQUATIONS IN THE STIFF LIMIT

We will now give details of the derivation of the tw
coupled equations which describe the semiconductor l
behavior in the stiff-limit of the simplified MFEBE.

As in the derivation of the semiconductor laser Swi
Hohenberg equations, we assume that the deviation from
critical detuningh is small, namely,h5e h1. In addition,
we suppose that the parameterb is now of ordere2 ~see Refs.
@10,11#!, i.e., b5e2 b2, and thatr is still given by r 51
1e2. We then introduce the spatial scalesX5Ae x, Y
5Ae y, and the two time scalesT15e t andT25e2 t.

Contrary to the caseb of order 1, the expansion as
power series ofe of the solution (e,p,n) will not start at the
first order: indeed if we look for traveling wave solution
the simplified MFEBE, Eq.~10! sought in the form (e,p)
5(ē,p̄) ei (qx1vt), n5n̄, we can deduce that for a sma
value of the detuningh and for a pumping parameter clos
from its threshold valuer c51 a traveling wave exists, asso
ciated with the expressions
03622
c

er

he

n̄5r 212
1

12k2u S h2aq2

s11 D 2

, ~D1!

ē 2 5
b

12 f
n̄, ~D2!

p̄5H 12
i

s11
~h2aq2!1Fk2

i

s11
~s j 1v !G

3
1

12k2u S h2aq2

s11 D 2J ē. ~D3!

The carrier density is of second order ine @Eq. ~D1!#. Since
b is of ordere2, Eq. ~D2! leads toē of order e2. Equation
~D3! indicates that at the lowest order ine the value of the
polarization fieldsp̄ is of the same order as the value of th
electric fieldē. Therefore we look for expansions ofe, p, and
n as power series ofe started at the second order, namely

~e,p,n!5e2~e2 ,p2 ,n2!1e3 ~e3 ,p3 ,n3!1•••.

At order two, we get

se25sp2 ,

p25e2 ,

050,

which givese25p25c and the equations at order three a

S ]

]T1
2 ia¹2De25s~p32e3!,

S ]

]T1
1 ih1D p25e32p3 ,

S ]

]T1
2c¹2Dn250,

which read in terms of the complex variablec,

s~e32p3!52S ]

]T1
2 ia¹2Dc,

~p32e3!52S ]

]T1
1 ih1Dc,

S ]

]T1
2c¹2Dn250.

The compatibility of the first two equations requires the fo
lowing solvability condition, which describes the variation
of c at the time scaleT1:

~s11!
]c

]T1
5 i ~a¹22sh1!c. ~D4!

We can then choosee350 and
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p352S ]

]T1
1 ih1Dc52

i

~s11!
~h11a¹2!c.

At fourth order,

]e2

]T2
5s@p42e41 i ~ j 1 ik !~12n2!e2#,

S ]

]T1
1 ih1D p31

]p2

]T2
5e42p41~12n2!@e22~u1 iv !p2#,

S ]

]T2
1b2Dn21S ]

]T1
2c¹2Dn35

1

2
~e2* p21e2p2* !2 f ue2u2,

i.e.,

s~e42p4!52
]c

]T2
1s i ~ j 1 ik !~12n2!c,

~p42e4!52
]c

]T2
1S ]

]T1
1 ih1D 2

3c1~12n2!@12~u1 iv !#c,

S ]

]T1
2c¹2Dn31

]n2

]T2
52b2n21~12 f !ucu2.

Again we obtain the following solvability condition:

~s11!
]c

]T2
5sH 2S h11a¹2

s11 D 2

c1@ i ~ j 1 ik !11

2~u1 iv !#~12n2!cJ . ~D5!

We can choosee450 and calculate

p45
1

s11 H 2S h11a¹2

s11 D 2

c

1@12s i ~ j 1 ik !2~u1 iv !#~12n2!cJ .

We now can collect all the terms and get the equation forc,
r

d

-

.
pl

e,

03622
~s11!
]c

]t
5~s11!Fe ]c

]T1
1e2

]c

]T2
G .

The spatial derivatives in Eqs.~D4! and~D5! are derivatives
with respect to the slow scalesX5Aex and Y5Aey. Any
term of the forme¹2 then corresponds to¹2 in terms of
spatial derivatives with respect tox andy. Letting n5e2 n2
1e3 n3 we get

~s11!
]c

]t
5sH @ i ~ j 1 ik !112~u1 iv !#@~r 21!c2nc#

2S h1a¹2

s11 D 2

cJ 1 i ~a¹22sh!c.

Similarly, the equation forn is

]n

]t
5e3

]n2

]T1
1e4S ]n3

]T1
1

]n2

]T2
D

5c¹2~e2n21e3n3!

1e4@2b2n21~12 f !ucu2#,

i.e., in terms of the original variables and redefininge2 c as
c,

]n

]t
5c¹2n2bn1~12 f !ucu2.

Finally, the expressions ofe andp versusc are

e5ee11e2e21e3e35c,

p5ep11e2p21e3p3

5c2
i

s11
~h1a¹2!c1

1

s11

3H 2S h1a¹2

s11 D 2

c1@12s i ~ j 1 ik !

2~u1 iv !#~r 212n!cJ .
nd
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