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Bulk and quantum well semiconductor lasers by nature display fundamentally different physical character-
istics relative to multilevel gas and solid state lasers. In particular, the refractive index is nonzero at peak gain
and the peak gain can shift strongly with varying carrier density or temperature. Moreover, a quantum well
laser gain may be strongly asymmetric if more than the lowest subband is populated. Rigorously computed and
experimentally validated, gain and refractive index spectra are now available for a variety of quantum well
structures emitting from the infrared to the visible. Active devices can be designed and grown such that the
gain spectrum remains approximately parabolic for carrier density variations typically encountered in above
threshold pumped broad area edge-emitting semiconductor lasers. Under this assumption, we derive a robust
optical propagation model that tracks the important peak gain shifts and broadening as long as the gain remains
approximately parabolic over the relevant energy range in a running laser. We next derive a multimode model
where the longitudinal modes are projected out of the total field. The next stage is to derive a mean-field single
longitudinal mode model for a wide aperture semiconductor laser. The mean-field model allows for significant
cavity losses and widely different facet reflectivities such as occurs with antireflection- and high-reflectivity—
coated facets. The single mode mean-field model is further reduced using an asymptotic expansion of the
relevant physical fields with respect to a small parameter. The end result is a complex semiconductor Swift-
Hohenberg description of a single longitudinal mode wide aperture laser. The latter should provide a useful
model for studying scientifically and technologically important lasers such as vertical cavity surface emitting
semiconductor lasers.
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INTRODUCTION recently when it was recognized that both diagonal and non-
diagonal dephasing collisions needed to be treated at the full
Semiconductor lasers occupy a special niche in emerginguantum kinetic level. A detailed review of this problem with
optoelectronic technologies, offering compact size and veryelevant references to the earlier literature is contained in the
high bandwidth. The very large gain offered by these devicesextbook by Chow and Kocf]. A surprising result of these
comes at a price however. In contrast to gas or other solidalculations was that, not only did the nonphysical absorp-
state lasers where simple few-level quantum mechanical deion below the band edge disappear, but so also did the
scriptions suffice, semiconductor lasers involve complexstrong falloff of the gain line shape near the band edge. In
many-body interactions within and between multicomponentact, the resultant gain line shape looks much more symmet-
plasmas[1,2]. Consequently, new features emerge whichric, in agreement with experimental gain measurements. A
profoundly influence their operational characteristics. Of parmarked asymmetry in the gain only appears when higher
ticular significance is a strong amplitude-phase coupling otonfined subbands are populated.
the electric field and the shift of the semiconductor gain peak A semiconductor laser theory which simultaneously incor-
with varying carrier density or temperature. Significant gainporates full band structure, many-body dynamics, and propa-
line shape asymmetries typically occur when higher subgation effects is beyond the existing or anticipated supercom-
bands in the quantum welQW) become excited. A long puting capabilities. An alternative approach is to decouple
standing problem with gain calculations is the inaccuracy othe many-body physics from the the optical propagation and
gain predictions in the neighborhood of the renormalizedncorporate this as a quasiequilibrium optical response func-
band edge. Gain formulations based on Lorentzian line shap#on that acts as a source term in Maxwell's equations. The
functions tend to yield nonphysical absorption below theapproximation inherent in this approach is that the very fast
renormalized band edge. This nonphysical prediction wagfemtosecongdynamics associated with many-body carrier-
known to be due to an oversimplified treatment of polariza-carrier and carrier-phonon scattering are slaved to the typi-
tion dephasing in the semiconductor material. The assumgeally much slower(picosecond to nanosecondynamics of
tion that collisional dephasing could be treated at a rate equahe semiconductor laser. One might argue that experimen-
tion level has been identified as the main culprit. Thetally measured gain/absorption and refractive index spectra
semiconductor line shape problem was only solved fairlywould provide the ideal input to an optical propagation
model. However, reliable simultaneous experimental mea-
surements of low-density absorption, high-density gain, and
*Permanent address: Laboratoire de Simulation et de’Made refractive index spectra are not widely available. Moreover,
tion des Pheomanes de Propagation, ENSTA, URA 853 du CNRS, the various reduced model laser parameters derived in this
Paris, France; electronic address: jmercier@ensta.fr paper would then appear as tabulated numbers rather than
"Electronic address: jml@dinha.acms.arizona.edu analytic expressions. The combination of rigorous band
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structure and microscopic calculations only require as inpuinicroscopically computed semiconductor response through
the same band structure parameters that are available to teample fitting functions. This enables us to retain explicit
materials grower. No other adjustable parameters are needeghalytic expressions throughout the theoretical development.
Convergent refractive index and linewidth enhancement facAs the running laser only accesses a finite fraction of the full
tor spectra require the inclusion of detuned barrier states imulti-THz gain bandwidth and a finite range of carrier den-
addition to the well states. Experimental measurements dfities, we will restrict our current model to active semicon-
absorption, gain, and refractive index spectra across a broatlictor media with gain spectra that remain nearly parabolic
range of active group IlI-V and II-VI single and multiple in the relevant wavelength and carrier density range. We will
QW materials now match quantitatively with the full micro- also assume a fixed temperature in the laser. The latter re-
scopic theory[4-7]. Databases for different active QW striction could be removed by adding a temperature equation
semiconductor materials can be built up beforehand and useahd extending the gain tables in an extra physical dimension.
directly as input to the optical propagation model. We stress here that we are using the fully converged com-

Existing phenomenological theories of the semiconductoputed semiconductor line shape as input. As we & amiori
laser introduce a linewidth enhancement w@rfactor [8], determine whether the semiconductor active material fulfils
which is a measure of the strength of the amplitude-phasthe near-parabolic gain line shape requirement, we will use a
coupling of the laser field. This quantity which is derived simple Lorentzian fit to the line shape where the latter’s pa-
from the full microscopic theory as a linearization about therameters become functions of carrier dendi5]. Any
threshold carrier density, is a qualitative measure of thehanges in the laser structdiee., QW width, depth, material
strong frequency chirp of pulses generated within semiconeomposition, and nature of barrier regiofgraded index
ductor amplifiers or lasers and the strong transverse filamerself-confinement heterostructure versus self-confinement het-
tation instabilities observed in high-power wide-apertureerostructure, etg] will be reflected in changes in the laser
semiconductor lasers. Any derivation of a reduced orderequation coefficients. A secondary goal is to derive a physi-
parameter equation description of a semiconductor lasetally self-consistent partial differential equation model from
should reflect the presence of this quantity at leading ordemvhich single and multimode models can be derived. Here we
Another unigue aspect of the behavior of a semiconductowant to allow for the fact that many low- and high-power
laser is the rather pronounced shift of the gain peak withedge emitters contain facets with high and low reflectivity
varying carrier density and lattice temperature. This is par€oatings. Consequently the usual mean-field assumption will
ticularly evident in wide-aperture single longitudinal mode not work without some form of nonlinear coordinate trans-
lasers, such as vertical cavity surface emitting lasergormation. The single longitudinal mode model will become
(VCSELS9 [9], where the relative location of the gain peak the starting point for a further CSH reduction of the semi-
and cavity mode, strongly determines the transverse spatiabnductor laser equations valid for a wide-aperture single-
intensity output. longitudinal mode semiconductor laser. The latter provides a

Pattern formation in wide-aperture two-level lasers can beeneralized rate equation description of such a laser. We will
described by a systematic reduction of the full lasershow that the linewidth enhancement factorappears ex-
Maxwell-Bloch equations to a laser complex Swift- plicitly but that other contributions such as peak gain shift
Hohenberg CSH) equation10,11]. An important conclusion  with density also make significant contributions.
from this work is that the latter amplitude equation descrip- The paper is organized as follows. The beginning of the
tion, although strictly valid in the neighborhood of the laserpaper will be concerned with the simplification of the effec-
threshold, holds true even well beyond the onset of lasingtive Bloch equationgEBE) [15]. This model assumes that
However, the single Swift-Hohenberg equation is not a goodhe physical gain can be approximated in the vicinity of its
model to describe a class B laser. The model can be extendegectral peak by one or more Lorentzian functions. As men-
to include the mathematical stiffness of such laser systemsoned above, this is a restriction on the applicability of the
by augmenting the CSH equation by a mean-flow describingnodel presented here. In principle, this restriction could be
the slow dynamics of the laser material inversid,11]. lifted and the procedure outlined in this paper could be ap-
Later the model was extended in a phenomenological marplied to the raw gain data. In Sec. | we generalize the EBE to
ner to apply to semiconductor lasers and to study the stabthe case of counterpropagating waves. Then we derive in
lization of the weak turbulence in semiconductor lasers usingec. Il and Appendices A dB a set of coupled longitudinal
an optical feedback schené&2]. The latter approach was mode equations valid for wide-aperture semiconductor la-
capable of qualitatively capturing the filamentation instabili-sers. Following this, we restrict the model to a single-
ties experimentally observed in a wide-aperture semicondudengitudinal mode, retaining the transverse dependence, and
tor laser. Various other qualitative analytic approaches tmbtain the mean-field effective Bloch equatioiMFEBE).
treating the semiconductor gain and refractive index in opti-Section Il concerns the derivation of the simplified MFEBE
cal propagation problems exist in the recent literatureexpressed with dimensionless variables: it starts with the lin-
[13,14. As stressed above, the details of semiconductor maear stability analysis of the MFEBE in order to determine the
terial growth strongly influences the latter physical propertiedasing threshold. Then it becomes possible to define linear
so these phenomenological approaches add little insight intapproximations versus the carrier density of the gain and of
the behavior of real semiconductor lasers. the refractive index.

Our goal in this paper is to derive a self-consistent theo- In the end of the paper we derive the semiconductor CSH
retical model of a semiconductor laser that incorporates therder-parameter equations. Section IV is devoted to the con-

036221-2



DERIVATION OF SEMICONDUCTOR LASER MEAN. .. PHYSICAL REVIEW E 66, 036221 (2002

struction of the neutral curves deduced from the linear stathe confined well statd$]. With this result, we are now in a
bility analysis of the simplified MFEBE. Section V deals position to design a QW semiconductor amplifier and laser
with the nonlinear analysis of the simplified MFEBE, leading from the ground up, starting at the same point as the mate-
both to the derivation of a SH equation and to the generaltials grower.

ized rate equation model by inc|uding the mean f[d!ﬂ] The electric and the pole_lrization fields in a Fabfyd?e
cavity can be decomposed into a sum of forward and back-

ward propagating fields,
|. STARTING MODEL: THE EFFECTIVE BLOCH propag 9

EQUATIONS GENERALIZED TO E=ETe (K- Q) L E~el(=Kz= Q) 4 ¢ ¢ |
COUNTERPROPAGATING WAVES ) )
73:zPJrel(Kzfﬂct)_|_fpfe|(szfﬂct)+C_C_,

Starting from the full microscopic theory including many- ) ) ) ]
body interactions, and using a Lorentzian approximation ofvhereK=Q.ny/c is the optical wave vector in the medium
the susceptibility y(N,w), the Maxwell semiconductor ©f background indexy, with ¢ being the speed of light in
Bloch equation model was derivti5]. This model resolves the€ vacuum, and the axis is perpendicular to the two mir-
the full spatiotemporallongitudinal and transverseehavior 1S of the Fabry-Ret cavity. The index+ designates the
of a general semiconductor amplifier or laser. Within thisforward field, the index- designates the backward field, and
model, the susceptibility, which is critical to capturing the c.c_.”r]eferfsf tot_theBc‘:lomhpIex C?_njugated qu?ntléy.t " .
gain dispersion, is approximated by superposition of a baCkéount?argrgg;;:tingivasggz{:g%s generaiized o the case o
ground susceptibility frequency independeyg(N) and a

Lorentzian JE= ¢ JE* ic lsz+ KT N)E* P+
— =Yy T —
AN gt ng 9z 2ng|K Xo(N)EZ+22 01
XN o) =xo(N+ = 5 ooy P oP*

——={=To(N)+i[ 8~ 8(N) }P* ~i cgep AN E*,

where 8,= w.—Eg/# is the detuning parameter witg, the N 3

bare band gap and. the reference frequencp(N) deter- N PN ol * N

mines the strength of the Lorentzialg(N) determines the gt = DNVIN= 7N+ o0+ 27 {eoelxa (N) ~ xo(N)]
bandwidth of the spectrum which changes with density, and -
51(N) represents the gain peak shift with the density. In X(ET[PH[ET[)+PT*ET-PTE™

principle, multiple Lorentziangpoleg can be included in +P*E"—P E*},

order to improve the fit to the gain and refractive index spec-

tra over an arbitrary frequency bandwidth. For the presenwhereng is the group index]" the confinement factor, the
discussion, a single pole will suffice. An important point to operatorV? represents

note is that the gain spectra computed in the past using 2 P2

many-body theory for a variety of quantum well laser mate- V2= 4

rials, show a pronounced asymmetry with a sharp rise in the ax? ayz'

gain near the band edd&]. However, experimentally mea-

sured QW gain spectra do not display this feature—they loo S
much morg symFr)netric and bulkri)keY As mentioned in the!" the lateral directiong andy. The parametep, J, & andw

Introduction, this discrepancy has now been resolved analre’ trespeﬁtlvely, thg q“t?‘”t“m ?ﬁ'ct'ﬁ.n(l:(y’ pum*plgg purrem,
recent many-body calculations show quantitative agreemel%ec ron charge, and active region tnickness. esigns the
with experimen{4—7]. The source of the discrepancy <,jlrosecomplex conjugated quantity. When describing edge emitting

from ignoring nondiagonal scattering terms in the quanturﬁasers the transverse Laplacian operator is replaced by

Boltzmann description of the collisional relaxation terms ap_azlaxz.
pearing in the microscopic semiconductor Bloch equations

[16]. This result means that the usual rate equation assump-

tion made in this model is inappropriate and further justifies The derivation of the mean-field model from the full
using a fitting procedure to the quantitatively computed gaircounterpropagating effective Bloch equations is presented in
spectra. Although gain spectral shapes could be accuratelppendices A and B. Here we summarize the key results.
calculated with the improved approach, there still remained &he derivation consists first in introducing a transformation
strong discrepancy between experimentally measured linesf the counterpropagating optical field envelops in order to
width enhancement ar factors and theory. This is not sur- obtain new field amplitudes obeying standard ideal mirror
prising as the latter involves a ratio of two differential quan-boundary conditiongAppendix A). By unfolding the cavity
tities, the derivatives of the real and imaginary parts of thet becomes possible to introduce a Fourier longitudinal mode
dielectric susceptibility, making this quantity very sensitive decomposition. The previous transformation needs the intro-
to small changes in the gain or refractive index. This operduction of a mean reflectivitiR defined as the square root of
problem has just been solved by combining full band structhe product of the two reflectivitieR; andR, of both mir-

ture and many-body calculations which quantitatively in-rors. Extending the procedure for a ring cavifyg], we ob-
clude the nonresonant unconfined barrier states in addition t@in a coupled mode decompositiGhppendix B).

andDy is the diffusion constant of the carrier diffusion term

II. MEAN-FIELD APPROXIMATION
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The mean-field, single-longitudinal mode, model equa-ll. APPROXIMATION OF THE MEAN-FIELD EFFECTIVE

tions read BLOCH EQUATIONS
A. Linear stability analysis
E: B c/inR] +i—C(EV2E+KF NE P ) Iasli?‘elowltr;regtz)lg,:tge S(;IIL\JIti:o& ofvt\ma MchEB_E isttr:je no_n-
at 2n,L 2n, | K 0 coer | g solutio an o en the injected car

@) rier densityN, reaches the threshold carrier dendity, the
nonlasing solution is unstable and an instability of wave vec-

tor a and of frequencyw can develop. This instability is
sought in the form

aP . :
S = (TN il 80— SN TP~ i €oeANIE,  (3) EE adeai-a

P=P ei(qx;+qy9_wt),
N n( O) A% R| |n R| {eoeb[XO( )

at N=Ny+N,

2 [ — —
—Xo(N)]|E[*+P*E~PE*}. whereE, P, andN are constants. Eliminating from Egs.
(2) and(3) we deduce that the electric field satisfies

This system of equations will form the basis for the deriva- j— — ic |1 y—

tion of the semiconductor laser complex Swift-Hohenberg ~ ~1@E==kE+ 5o (=q)E+KI'x(No,)E|, (4)
equation in the following sections. The physics of the laser g

gain material is contained in the single pole model fits andvherex=c|In R|/2n4L [Eq. (A4) of Appendix A]. We intro-
these capture density dependent gain bandwidth variatiomluce the modal gai defined by

peak gain shift, low-density absorption, and variation of an
effective a-factor spectrum. We note here also that this sys-

cKI'
G(Nva)z__ (No,w)

tem of equations allows us to consider realistic semiconduc- 2n,

tor laser devices that have very different facet reflectivities as

would be the case with lasers having AR- and HR-coated B CKF{ A(Ng)I'o(Np)
facets. The usual mean-field limit corresponds to the mean 2ng | To(Ng)2+[w+ 89— 8(Ng) ]2

reflectivity R—1 as would be the case for low-power
VCSELSs. High-power wide-aperture vertical external cavity

semiconductor lase®¥ECSELS, on the other hand, contain —xo(No) 1,
multiple quantum well stacks to increase the single pass gain

and they typically can accommodate facet losses signifi- . . N i
cantly less than unity. The geometric cavity factdepen- using the Lorentzian approximation for the susceptibility

dent onR) will then be expected to modify the stimulated [Eq. (1)]. We also define the function

emission term on the right-hand side of the carrier density cKT
equation. f(Noaw):w+_{X6(No)
The electric field and carrier density evolution equations 2ng
are close to the system obtained in the case of a lossy semi-
conductor lasef19]. The mean-field model in Ref19] has N A(No)[ @+ 89— 6(No)]
been compared to a full counterpropagating wave code and To(No)2+[w+ 85— 8(Ng) ]2 ’

showed good agreement.

As we will be interested in the derivation of an amplitude Then introducing the real pagt’ and the imaginary pan”
description valid near threshold, we will use linear approxi-of the susceptibility, the real part and imaginary part of Eq.
mations to the background susceptibiligy(N), the strength  (4) read, respectively,
of the LorentzianA(N), the bandwidth of the spectrum
I'o(N), and the gain peak shift with the densiyN). These G(Np,w)=«, )
qguantities will be expanded around a threshold valigeof
the injected carrier densitM,. These assumptions are justi- 2= £(Ng, o) ®)
fied by the observation that the carrier density remains ap- 2ngK a = 0, @)
proximately clamped near its threshold value above lasing
threshold. Note that the carrier density itself may be strongl\Equation(5) defines the threshold at which the laser turns
nonuniform along the device but what we are referring toon: the threshold is reached when the amplification of the
here is thez-averaged density. We need first to determine theelectric field measured by the gain balances the attenuation
threshold carrier densitiN. around which to expand the of the electric field due to the losses This is achieved
above functions. when the pump density reaches the vailge= Ny . The sec-
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G(N,®)  _1x10”

—2x10% L

--—- losses ~

-3x10%
—2x 10"

-1x10™ 1x10" 2x10"

[

FIG. 1. Variations of the Lorentzian approximation of the gain
(rads 1) vs the frequencyw (rads ) for several values of the
injected carrier densityN, (m 3) (L=200um, R=30%, n,
=3.6, n,=4.6, I'=0.25, O.=1.42¢eV, 5=0.95 vy,=2

x107° s*%, Dy=18x10"2m?s™ 1 w=10"8 m).

ond equation is the generalization of the frequency puIIingg

condition extended to a wide-aperture laser.

Once the fitting functions are tabulated for a particular !
ds equal tog.=1.202um™ -,

QW gain medium, the lasing threshold can be determine
The threshold pump carrier densiyg is determined from
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3.0 T T

20 r 4

qC

-1.0 L :
0.2 0.3 0.4

R

FIG. 2. Critical wave numben, (in um™1) vs the mean reflec-
tivity R.

ain is larger than the losses exists. In the d@se80%, the
threshold carrier density .= 2.09x 10°* m~2 and the cor-
responding perturbation wave number, deduced from(&g.
H 1

We have solved Eqg5) and(6) for various values oR

the simultaneous solution of these two equations. The thresfio" the same laser of length=200 «m as considered in Fig.

old for a plane wave or transverse spatially homogeneou

mode laser is obtained by settifg|=0. For a GaAs laser
the coefficientsyo(N), A(N), T'o(N), and5(N) involved in
the Lorentzian approximation of the susceptibility have bee
calculated as rational functions versus the carrier demsity
[19]. Using these expressions we can calculate explicitly th
gain. In a characteristic Fabry-f¢ cavity of length L
=200 um and of mean reflectivitR=30%, the evolution
of the gainG(Ngy,w) when the frequencw varies is repre-
sented in Fig. 1 for values of the injected carrier denbigy
varying in the range[1X10?*m 34x10%*m 3]. The
lossesk=1.963< 10'? rad s * are represented as a horizon-
tal line. The frequencw is a detuning relative to an absolute
frequency(or energy of 1.42 e) The latter is chosen to

match the peak of the Lorentzian fit to the absolute fre-
guency location of the peak gain of bulk GaAs at the thresh-

old density. Finite values ab correspond to frequency pull-
ing relative to this absolute value.

WhenNjy is fixed, G(Ng,w) presents a maximum located
in the frequency wmadNo)= 8(Ng)— 8. The associated

maximum value ofG(Ng,w) is
o (o CKO[ANY .
max( o)—z—ng W_XO( 0| (7

The threshold is reached when the equality, &4, is satis-
fied and thus at least whéB,,,,,(Ng) =« . We see in Fig. 1
that for both the injected carrier density valuég=1
X107 m~2 andNy=2x 107 m~2 the gain is always lower
than the losses and no frequency can satisfy(B.On the
contrary, for the injected carrier density valuégequal to or
larger than 3 10%* m™~3 a range of frequencies for which the

L. The critical valueg of the wave number is represented in
Fig. 2 versusR. Corresponding values ™. and of w. ver-
susR are drawn on Figs. 3 and 4. We see in Fig. 2 that there

(£Xists a sharp transition from finite off axis to plane wave

emission at lasing threshold as the mean reflectiRtgx-

&eeds a finite value. The transition frayg+0 to g.=0 oc-

curs for the mirror reflectivity valu®=0.326. Inspection of
Fig. 3 shows that the carrier density decreases with increas-
ing reflectivity R. At the valueR=0.326, the normalized
critical densityN.=2.09. This is the point at which peak
gain in Fig. 2 moves from positive to negative detuning.
Therefore for reflectivities belowR=0.326, the laser emits

1.8 . .
0.2 0.3 0.4

R

FIG. 3. Critical injected carrier densityl, (X10** m~3) vs the
mean reflectivityR.

036221-5



J.-F. MERCIER AND J. V. MOLONEY PHYSICAL REVIEW B66, 036221 (2002

5x 10" . . 2. Case of a zero critical wave number

ForR>0.326, we obtaim.=0, while Eqs.(8) and(9) no
longer apply. The relation betwed, and . is more com-
plicated than previously and will be detailed later with non-
ol _ dimensional variablegSec. 1110. This is obvious when
looking at Fig. 4: the curve presents a slope brealRin
o =0.326, and the critical frequency remains nearly constant
) for R>0.326. For the particular cage=0.45 we findN,
=1.89 1¢* m % and w.= —0.509x 10" rad s *.

-5x10% |
B. Simplified mean-field effective Bloch equations
Having determined the threshold carrier density we are
1y 10” ) . able to introduce linear approximations of the Lorentzian

02 03 0.4 coefficients, defined around the value of the injected carrier
R density N;. Noting with a single index the values of the
FIG. 4. Critical frequencyw, (rad %) vs the mean reflectivity ~CO€fficients defining the Lorentzian approximation of the
R susceptibility evaluated & =N, we can write
in an off-axis mode at threshold while for higher reflectivi- AN)=A1+A5(N=No),
ties, it emits in a quasi-plane-wayindamentgl mode[20].
Xo(N)=x1+x2(N—=N¢),
1. Case of a positive critical wave number

For small values of the mean mirror reflectivitiR Fo(N)=T"3 +I'2(N=Nc),
<0.326, the threshold carrier densh. is found to satisfy

GmaxNo) =«. (8)
Theref h t bal bet th . Note that the coefficientd;, x;, I';, andg; for i=1,2 are
erefore we have an exact balance between the maximug, exactly the ones defined in Appendix B. We have chosen
of the injected energy in the laser cavity and the losses on thﬁot to complicate notation. These expansions are valid only

mirrors. The critical frequency is close to threshold, wheh, and N are close toN.. We

S(N)= 8, + 5,(N—N,).

©e= 0mad No) = 8(Ng) — o, (9  introduce the new carrier density’ =N—No, and the cor-
rected imaginary part of the background susceptibility
while g, is deduced from Eq6). =x1+2ngk/cKI'. The MFEBE take the form
E_l 1V2E KT P P No—N¢)]E+ x,N'E
9 2ng|K + aﬂxﬁlpﬁ)(z( 0~ N IE+x2 :

oP H H ; ’ H ’
I: _[F1+|(51_50)+(F2+|52)(N0_NC)+(F2+|52)N ]P_|€0€b{[Al+A2(NO_NC)]E+N E},

’ H _ P2
— AN ’ H " " AN 2 * *
—_ = — + =1 + — + + — .
G = ONVIN' = N+ 2o (= 21 ol X x3(No— No) + 5N 1|+ P*E~ PEY)

p1 represents the total loss of energy in the cavity: the These equations have a form close to the Maxwell-Bloch
loss due to the interaction between the light and the mediur§duations which describe a two-level lag@1l]. Starting

proportional to the imaginary part of the susceptibility fom the Maxwell-Bloch equation for two-level lasers
Y—y"(NJ) and the loss through the mirrors of the Yritten in complex Lorentz notatiofi22], these equations
1™ c

. ) : were proved to be interesting for laser modeling since they
Fabry-Peot cavity proportional to the logarithm of the mean .. he reduced to order parameter descriptions in the form

reflectivity R. The variable chang®’=N—N, is chosen of Swift-Hohenberg equationfl0,11. The MFEBE may
instead of the chang®’=N—N., because it introduces also be written in complex Lorenz notation with a form
the differenceNo—N, which will be used as a control close to the Maxwell-Bloch equations, by making the follow-
parameter. ing change of variables:
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tI:F]_t,

) 2AR|INR] od
E=illj\/————— €9,
coerPo(1-RD)
[2iR[INR| e,
P=T R eIo’dt ,
1P1 Ay(1—RD) p

pal'1
N= A, n,

whereo=cKI'p;/2ngI"; andd= y1/p;. The MFEBE then
read, suppressing the prime of the new tithe

Je .
E=|aV2e+o[p—e+|(J+|k)(r—rc—n)e],

(;Ft) =—[1+inp+(utiv)(r—=r,—n)]p+(r—n)e,

(10

M bntcy? F(e*prept
i n+cv<n E(e p+ep*)
—[f+k(r=rc—m]lel?,

where the coefficients are defined as

ae S hiye L2tTo2)py
2nKTy’ v A,
61— 69 r:A1+A2(NO_NC)

ry pil’1 7
. X1 Yn
d+if===, b=,
P1 r,
. X2l Dn
j+|k— A2 , —F—l.

We have also introduced the new detuning Q)+ od and
the threshold value; of the pumping parameter, definedras
evaluated alNy=N¢,

¢ paly’

r (11

This system is called the simplified mean-field effective

Bloch equationg SMFEBE), since the fitting functions in-

PHYSICAL REVIEW E 66, 036221 (2002

ground susceptibilityyg, written in a nondimensional form.

u andv represent the derivatives with respect to the carrier
density, respectively, of the bandwidth of the spectiftenm

I',) and of the gain peak shift with the densitterm &,).

The last new term is the diffusion of the carrier densi¥%’n
appearing in the equation for the evolution of the carrier
density. It is interesting to notice that the Maxwell-Bloch
equations can be exactly recovered from this set of equations
by setting the new parametersd, f, j, k, u, andv, to zero.

As in the Maxwell-Bloch model, the pumping parametés

still proportional to the injected current and thereforeNig

but also depends on the strength of the Lorentzian. Compar-
ing this system to the Maxwell-Bloch equations, we see that
the temporal evolution of the electric and polarization field
and the carrier density depends on the pumping parameter
for a semiconductor laser, whereas only the temporal evolu-
tion of the polarization field is depending on the pumping
parameter in the Maxwell-Bloch model. This property will
complicate the determination of the lasing threshold of the
simplified MFEBE: whereas the threshold was obtained ex-
plicity as a function of the perturbation wave number in the
case of the Maxwell-Bloch mod¢l0,11], the threshold will

be found as a root of a polynomial.

C. Values of the dimensionless critical parameters. and q.

When studying the lasing threshold we encountered two
situations according to the value of the losses in the laser
measured byR: q.#0 or q.=0. In both situations we will
now express . andq, in terms of the coefficients appearing
in the SMFEBE.

1. Case @#0

In this first situation the threshold corresponds to an exact
balance between the maximum of the gain and the losses.
The maximum of the gain is located at the critical frequency
we= 61— 6y [EQ.(9)], and attains the valy&qgs.(7) and(8)]

cKT (Al ”)
K=F5— |~ — .
2ng \T; X1

Therefore using Eq.(11) and the relation p;=yx]
+2nyx/cKI" we find that the critical pumping parameter is
r.=1. The critical perturbation wave numbeg is defined,
using Eq.(6), by the relation

c cxkl'x;
2_ s _
2ngK qC_f(NC’wC) 51 50+ 2ng

Dividing by I'; and defining the new effective detuning

volved in the microscopic semiconductor response have been

reduced to linear expansions.

If we compare this linearized system to the Maxwell-
Bloch equations, we see the following differences: first of all

61— 69
ry

cxlx;
2ngl'y

n= (12

some new complex terms appear, essentially linked to the

Lorentzian approximation of the susceptibilitd-{if) and
(j +1k) represent, respectively, the constant pgrtand the
derivative with respect to the carrier density of the back-

we are led to the relatiomg?= 7. This parabolic law is
consistent with the behavior af. versusR for R<0.326
(Fig. 2.
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2. Case @q=0 A. Dispersion relation

These results are valid as long as the detunjng posi- The determinant of the system E@5) must vanish to get
tive, sinceq=p/a. If =<0 we are in the case of a plane a nontrivial solution. Introducing the following functions de-
wave lasery,=0. Introducing the dimensionless frequency pending on the detuning; (through the critical pumping
x=(w¢+ 8o— 61)/T'1, the energy balance Eq5), and the parameter:), and on the pumping parameter
dispersion relation Eq6) evaluated atj=0 and divided by

I'y read J(np,r)=0aj(r—rg),
A 1 K(n.r)=o[1+k(r—ro)], (16)
e (13
Fiiexe 7V U(7r)=1+u(r—re),
61—69 ckl' [A; X ) V(n,r)=v(r—re),
0=x+ ' TonTo\T. S+t x1- (14)
1 Ngl 1\ l11+x the cancelation of the determinant leads to the dispersion

" . relation
The critical pumping paramet¢Eq. (11)] can be expressed

as a function of the dimensionless frequency thanks to Eq. [s+K-+i(w+ag?—J)][s+U+i(w+n+V)]=0r.
(13): re=1+x2. Last using the value of the detunifigq. 17
(12)], the value of the parameter and Eq.(13), Eqg. (14)

simply becomes & x(1+ o)+ 5. Thusr.=1+ (5/1+ o).

. Taking the real and imaginary parts of E47) and elimi-
In the case of a two-level laser described by the Maxwelly, 544 the frequency leads to a transcendental equation that
Bloch equation$10,11], the same results were found except

- ~~Fthe threshold value of the pumping parametenust satis
that the square of the perturbation wave number was ImketJ1 pumping p bt

to the detuningQ) instead of the new detuning. It was
concluded thaf) was a control parameter leading to differ- or=(s+K)(s+U)
ent type of bifurcation of the nonlasing solution above

threshold according to the sign 6f. For a semiconductor ¢ threshold, the real paw of the temporal growth rata

laser, 7 is the effective control parameter. For positive values, apishes and the pumping parameter becomes a solution of
of the detuning, the critical pumping parameter jss1 and

the critical perturbation wave number ig.= =/ 7/a,
whereas for negative values of, r.=1+(5/1+0)? and or=KU
d.=0. In the following paragraph we will be interested in

the behavior of the laser when the wave number is slightlyyhereas the frequency is linked to the pumping parameter by
above its critical value and thus we will determine the neu+the relation
tral curves, i.e., the variations of the pumping parameteg)

Versusq.

1+

—ag?+J+V\?
L) 19

2s+K+U

p—ag?+J+V\?

%50

: (19

p—a+J+V
K+U

w=

)— n—V. (20

IV. NEUTRAL CURVES
Equation(19) may be written as an order four polynomial in
We look for a perturbation of the nonlasing solutien ther variable. Therefore a numerical procedure is necessary
—0=p=n of Eg. (100 in the form (,p) in or_der to draw the neutral curves. Howe\_/er, results con-
cerning the threshold can of course be easily recovered: the
threshold corresponds to=r. andq=q., and introducing
these values in Eq(19) leads to the critical value of the
pumping parameterc=1+(1;—aq§/1+ 0)?, and Eq.(20)
yields the critical value of the frequencw.=— (o7
+aq§/1+ o), where the critical perturbation wave number
g, satisfiesq,=0 if <0 and q§= yla if »>0. Above
threshold (>r.), linearization of Eq(10) is no longer pos-
sible because the perturbatioyg, andn become large, and
) o [ — nonlinear terms must be taken into account. Using an ampli-
[s+o+i(o+agd)—io(j+i k) (r—rc)le=op, tude equation method, simpler nonlinear equations can be
. deduced. To achieve this goal the typical temporal and spa-
{[s+1+i(w+n)+(utiv)(r—ro)]pt=re, (15 tial scales of the variables involved in the amplitude equation
need first to be determined. This can be achieved by studying
whereq= \/qxz+ qy2 is the modulus of the perturbation wave the local behavior of the pumping parameter versus the de-
number in the general case @ q, in the one-dimensional tuning » and versus the wave numbgrwhen this latter
case. parameter varies around its critical valgg.

=(e,p) €@ M andn=n, whereq=q,x+q,y is the
perturbation wave vector andl is the complex temporal
growth rate. The amplitudes p, andn are considered small
in order to be able to linearize E¢L0). We decompose the
growth rate in the form\ =s+iw wheresis the real tempo-
ral growth rate andw the frequency of the perturbations.
Using Eq. (10), the amplitudese and p are found to be
solution of the system
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FIG. 5. Neutral curve (q) for a detuningn=0.5. FIG. 6. Neutral curve for a negative detunipg= —0.5.

| =+a. The other values of the parameters in the simplified

In the case of a two-level laser, since the dispersion reIaMFEBE are deduced from RdfL5]. In the case of a 20gm
tion was found analytically, the deviation form threshold long laser corresponding to a threshold carrier denisity

—r. was obtained to vary _exp!icite_ly likegq.)? close to =2.00<10%*m3, these values areo=0.016, j=
threshold when t4he detuning is different from zero, and to_ 0.0041,k=—1.64, u=1.54, andy=2.18.
vary like (q—qc)” when Q=0 [10,11]. Thus it was con- Figure 5 shows the neutral curve in the case of the value
cluded that the slow space variables must depend ron (of the detuningp=0.5. It appears that for each value of the
—r.)Y*when the detuning is taken close to zero. In our casewave number, Eq(19) admits two real roots, and two com-
the link betweerr andq is not explicit, and we need to draw plex roots. The two complex roots and one real root do not
the neutral curves in order to find the powesuch thatr correspond to physical behavior. The real root with the
—r. varies like @—q.)" around threshold. Therefore in the smallest magnitude is independent of the perturbation wave
following paragraph we will determine the changes in thenumberg and is a nonphysical artifact of the linear approxi-
shape of the neutral curvegq) solution of Eq.(19) versus ~ mation of the coefficients appearing in the Lorentzian ap-
the perturbation wave number when the detuning varies. Proximation to the susceptibility. We will only discuss the
behavior of the real physical root. This radiq) has a mini-
mum located atj=0.71 with valuer=1.
B. Construction of the neutral curves We have also studied the variations of the sign of the real
Equation 19 is invariant under the transformatign-  €mporal growth rats whenr andq are varying, solving Eq.
— g so the solutions(q) are even functions, and we will just (18). The usual situation in linear stability analysis is recov-

give the behavior of the neutral curves for positive values of '€d: for a fixed value of the perturbation wave number,
the perturbation wave number when the value of the pumping parameters below the

critical valuer(q), the laser is stable and whenexceeds
r(q) the perturbation of the nonlasing solution becomes un-
stable. Domains of stability and unstability are indicated on
In the case of a positive detuning, the critical pumpingFig. 5.

parameter takes the valug=1. Introducing this value in _ _
the definition of the four intermediate functions defined in 2. Case of a negative detuning

Eq. (16) and solving the dispersion relation E@.9), the In the casen<0 the critical value of the pumping param-
neutral curves (q) can be calculated. The value of the co- eter is equal tor,=1+(7/1+ 0)?. When the detuning is
efficient a of the diffraction term in Eq(10) can be taken taken equal toy=—0.5 and thus .= 1.24, the neutral curves
equal to 1: indeed the spatial coordinatesndy in Eq.(10)  take the form represented in Fig. 6. The minimum of the root
are dimensional variables. Introducing the nondimensionat(q) is now located at the wave numbgg=0 and corre-
spatial coordinatex andy defined byx=Ix and y=Iy  sponds to the critical pumping paramet¢d)=r.=1.24.
wherel is a reference length, the evolution equation of the
electric field in the system Eq10) can be rewritten in a

nondimensional form. The new diffraction coefficieat We will now derive a Swift-Hohenberg equation from the
=a/l? is equal to 1 if we choose a reference length equal tsimplified MFEBE. The preceding paragraph has confirmed

1. Case of a positive detuning

V. WEAKLY NONLINEAR ANALYSIS
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that the nature of the bifurcation changes depending on th&e must chooser =1+¢€2, and take X=./e x, and Y

sign of the detuning. In order to capture the behavior of the= \/¢ y for the spatial coordinates.

simplified MFEBE equations for both signs af, we as- We need also to determinate the slow time scales. Follow-
sumed the detuning small and a small paramet&r intro-  ing the same procedure as above, we can find the expressions
duced. Then we definey=e€ 7, and look for solutions of the real temporal growth rateand of the frequencw as
(e,p,n) in the form of a power series expansion in the smallexpansions in the small wave numbgr Starting from the
parametere. The laser variables also depend on slow tem-dispersion relations Eq18) and Eq.(20) and looking for
poral and spatial scales that we will determine in the follow-values of the parameters g, », s, and » close to their

ing paragraphs. As in the case of a two-level laser, analyticalritical values, we obtain that the temporal growth rate and
results are necessary to derive an amplitude equation: this ife frequency are linked tp and » through the relations
achieved by developing the dispersion relation as an expan-

sion in the small quantitg—q.. 2

72— a
(o+)sy=0| (1—k=Wps=| 77| | (23
A. Determination of the slow time and space variables
For »=0, the threshold is located at the wave number (0+1)w,=—[a+an,]. (24)

g.=0, in the critical pumping parameteg=1, and is asso-

ciated with the frequency.= 0. To calculate the slow space Since the frequency varies at the first order Ig=0(e)

scales we need to determine how the pumping paraméser . ST
varying versus the perturbation wave number about its criti—[Eq' (24)] and since the real temporal growth rate varies like

cal valuer .=1. Keeping the detuning equal t9=0 , if we q*=0(¢’) [Eq. (23], the slow time scales necessary are

- _ .2
let the perturbation wave number vary a little from its critical Ti=etandT=et.

value, namelyg small, then the pumping parameter may be

written asr =1+ p where the introduced parameieis also B. Reduction to a Swift-Hohenberg equation

small. From the dlsperspn-relatlon Ed9) we obtaln-at the The slow time and space scales being determined, the
lowest order in the deviation from threshojdand in the  caculations to derive a Swift-Hohenbet§H) equation can

small wave numbeq a link betweerp andgq, be performed and are presented in Appendix C. It reads at
—ag?+(oj+v)p]? order three ine,
Ck— 2y _
(1-=k—=u)p+0O(p) ) [1+0O(p)], W ) +av?|2
(22) (o+1)—r=o| (r—D(A-k-w¢—|—7
whereO(p) designs a function of ordes. Looking for the 1
parameterp expressed as an expansion in the small wave xw—(1+ia)5|¢//2|¢ +i(aV?—o7)y,
numberq: p=p;q+ p,g°+ - - -, and solving Eq(21) at each
order in the small wave numbey, we find thatp;=0=p, (25

= p3, and thus that the deviatignof the pumping parameter

from its critical value must vary likg*: (1-k—u)(r—1)  where the obtained alpha coefficient is defined as
=(alo+1)? q*. We deduce that above threshold a band of

wave vectorgy of width (r —1)Y centered round},=0 is

experiencing growth. The right scaling for the new spatial a=—-.
variables X and Y is then X=(r—1)**x and Y=(r 1-k-u
—1)Yy. If we consider now a detuning slightly different

from its critical value, namely,; small, then Eq.21) is  To confirm that Eq(25) models the same phenomena as Eq.

ji—v
(26)

replaced at order one im and two inq by the relation (10, we have compared these two equations: identical
. threshold values and traveling wave solutions are found. Cal-
n—ag’+(aj+v)p|? culations are not presented here for the sake of brevity, but

2y —
(1=k=wp+0(p%)= o+l [1+0O(p)]. the procedure followed is analogous to the one used in Refs.

(220 [10] and[11]. Moreover, we have already mentioned that if
we take all the parametecsd,f,g,h,j,k,u,v equal to zero,

7 is considered as a small parameter and thus can be eqe simplified MFEBE reduce exactly to the Maxwell-Bloch
pressed as an expansion in the small wave nungpep  equations describing a two-level laser. When all of these pa-
=71Q+ 7,9°+---. In order to keep all of the relevant rameters vanish, the detuning= Q + od becomes simp2
terms on the right-hand side of E(R2) and thus obtain a and we recover exactly the Swift-Hohenberg equation for
Swift-Hohenberg equation that takes into account all thewo-level lasers.
physical parameters simultaneously, namely, the diffusion
termiaV?e and the detuning;, we must consider thap is
of orderqg?. Therefore we impose; =0 and we deduce that
7, must satisfy (1 k—u)p,=(7,—alo+1)?. Sincey var- Using an intuitive derivation of the linewidth enhance-
ies like (r —1)*?, if the order of magnitude of; is callede, ~ ment factora [8], the following formula was obtained:

C. Characterization of the linewidth enhancement factora
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ax’' TABLE |. Values of the coefficientx for various lengths of a
IN o laser.
XA=— .
ax" L(pem) a
N 100 -1.81
. . . 200 -1.98
As a consequence of the Lorentzian approximation of the
- : h 250 -2.11
susceptibilityy of the semiconductor mediupig. (1)], the 300 205

linewidth enhancement factor deduced from Henry’s formula
Eq. (27) reads

Here again we have compared the instability thresholds and
the traveling wave solutions of the simplified MFEBE and of
the coupled SH equations in order to check if both ap-
a= A proaches describe the same physical problem. The same re-
Az—X'le—Fzr_ sults are obtained, confirming that the reduction of the sim-
1 plified MFEBE to the coupled SH equations is valid.

It is possible to obtain a system close to the coupled
Swift-Hohenberg equations derived from the two-level
Maxwell-Bloch equations, by introducing the change of or-
der parameters

T s,
X2l 1 2F1

However, using the definitiong+ik=x,I'{/A, andu+iv
=(I',+i8,)p1/A,, the deduced value af from Eq.(26) is

XéF1_52P1

a=—” . n
A= xl1—Tpq

" a—k—u
Then the propertyA, /Ty = p, valid for small values of the -
detuning(whenr.=1) leads to the same expression for the Y e’ "
«a factor as the expression deduced from Henry’'s formula. (1-k—u)(1—f)
Therefore our method is consistent with Henry’s approach of

laser emission, and provides a way to calculate explicitly therhen the coupled Swift-Hohenberg equations take the form
coefficient «. Some values of thex factor for various

(r—1)(1—k—u)/(1+0)]

lengths of laser and a mean reflectivity of the laser cavity Iy n+av?\?
R=30% are listed in Table I. These values are around (0+1)— =0 (r—D(A-k-wy—| 7
—2, which is consistent with experimental measurements.
Xy—(1+ia)ny|+i(avVi—on)y,
D. Generalized equations in the stiff limit (b—0) vl e ( mY
In the stiff limit of the Maxwell-Bloch equations, the deri- an
vation of a Swift-Hohenberg equation leads to two coupled —=cV?n—bn+|y|%
order parameter equatiofit0,11. This limit corresponds to at

a small decay rate of the population inversion and better _ . L
describes a class B laser than the single SH equation derivéiWe take the semiconductor coefficientsd-+if, j+ik,
by considering finite. We have already mentioned that the @1d U+iv equal to zero we recover exactly the coupled
simplified MFEBE have a form close to the form of the Swift-Hohenberg eq_uatlons in the case of a two-level_ laser.
Maxwell-Bloch equations, and thus we can expect the simJ he model chosen in Reff12] corresponds te=0 (no dif-
plified MFEBE to also give rise to coupled complex Swift- fusion of the carrier density was consideresidk+u=0.
Hohenberg equations.

We need to repeat the procedure of Appendix C, taking VI. CONCLUSION
into account the fact that is small. The derivation of the
coupled Swift-Hohenberg equations is given in Appendix D.
They read at order four ia,

In this paper we presented the derivation of a systematic
approach for describing optical propagation in wide aperture
edge and surface emitting semiconductor lasers. Inputs to the
model include rigorously computed and experimentally vali-
[iI(j+ik)+1—=(utiv)][(r=1)¢y—ny] dated gain and refractive index spectra parametrized by the

total carrier density. The present analytic approach, based on
a simple Lorentzian fit to the full semiconductor gain line
+i(aVi—on)y, shape, allows us to explicitly compute analytic coefficients
for the various reduced laser models. The approach described
here could also be applied to the raw computed gain and
‘7_“ cV2n—bn+(1— )| 2. refractive index spectra or to experimental data, if available.

gt The nonlinear partial differential equation model, its single

(0'+1)aa—ltll=0'

2

¥

n+av?
o+1
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and longitudinal mode reductions include the important mi-coefficients of the mirrors. Contrary to R¢19], no external
croscopic influences of peak gain shift and gain spectruninjection is considered.
broadening with density variation. We have assumed that the
temperature is fixed at room temperature in the present study.
The latter restriction could be relaxed by providing gain and
refractive index tables parametrized by carrier density and In the case of a unidirectional ring cavity, boundary con-
temperature and by adding a heat diffusion equation. In additions that involve both a time delay and a scaling of the
dition, we have obtained a reduced order-parameter equatidield amplitude are obtaineld.8], preventing one from rep-
description of a semiconductor laser that could be used teesenting the cavity field as a linear superposition of orthogo-
study wide-aperture VCSEL and VECSELSs. The latter typi-nal modal functions. In the case of a highly lossy semicon-
cally consist of multiple stacks of quantum wells and theductor laser in a Fabry-P& geometry, the same problem is
increased gain per unit length can accommodate significantlifaced and boundary conditions involving a scaling of the
greater facet losses than regular VCSELSs. counterpropagating electric fields are obtaif&€]. In both
Using changes of variables and a single mode approximazases, the problem is solved by introducing a suitable trans-
tion, we proved that the EBE generalized to counterpropaformation of both the space-time coordinates and the dy-
gating waves can be reduced to the single-longitudinal modeamical variables, which allows an exact representation of
MFEBE. The procedure also leads to a set of coupled modthe new variables as linear superpositions of orthogonal cav-
equations that describe a multilongitudinal, multilaterality functions in the transformed frame.
mode broad area semiconductor laser. This description pre- We consider the transformation of the dynamical vari-
sents several advantages: in particular, in the singleables,
longitudinal mode case, only three evolution equations in-
stead of five are required. After having determined the lasing £+ —le(l’z)z In R+
threshold through a linear stability analysis, linear expan- v '
sions of the parameters involved in the nonlinear couplings
were introduced, and a simplified form of the MFEBE was . —(1/2)2In R
established. E'=we E,
We then presented the derivation of order parameter equa-
tions in the form of complex SH equations, suited to model 1
the output of a wide-aperture single-longitudinal mode semi- p’ t="gl2zhRp+.
conductor laser such as a VCSEL. The slow time and space v
scales were determined through a linear stability analysis of
the simplified MFEBE and from the characterization of the P’ ~ = pe (U2znRp-
behavior of the neutral curves. Then the nonlinear analysis, '
using power series expansions in a small parameterked
to the distance between the pumping parametend its  where we have introduced the mean reflectivity of the Fabry-
threshold value ., leads to the SH equation, or the coupled Paot cavity R=yR;R, and the normalization coefficient
SH equations in the stiff limit. In this latter case, the model=R{"* . It may appear surprising thatdoes not depend on
equations chosen in R¢fL2] in order to study the turbulence R, since both mirrors should have symmetric influences. The
control in semiconductor lasers are placed on a sound fookymmetry can be easily recovered by changingn z
ing. In particular, the empiricad factor introduced in Ref. —(1/2) in the transformation defined just abofjthen v
[12] comes naturally in the derivation of the SH equation,=(R;/R,)¥|. The transformation chosen allows us to
and also agrees with Henry’s definitip8] for the linewidth  lighten the writings. Thanks to this transformation the

1. Change of variables

enhancement factor. boundary conditions become symmetric in the new frame,
and the new field amplitudes obey standard ideal mirror
ACKNOWLEDGMENTS boundary condition&€’ "=E’ ~ in z=0 andE’ "=E’ " in

z=1. The transformed equations of motion
This work was supported by the U.S. Air Force under
Contract No. F49620-00-1-0002 and, in part, by the National JE*

Science Foundation under Grant No. DMS 9811466. —_ < IaEf _[InR £
at ngL 0z 2
APPENDIX A: EVOLUTION EQUATIONS FOR THE ic (1_, . . *
PERIODIC FIELD AMPLITUDES o RV E-+KT| xo(N)E™ + 0
g9 0€b

In this appendix we will derive from the full counter- (A1)
propagating field equations, governing equation for new
variables adapted to Fourier decomposition. Taking the
length of the cavitylL as the reference length, the boundary ~ JP~

conditions on the end mirrors af&" = (R, E~ in z=0 and st U Lo(N)+i[ 60— 8(N)J}P™ —ieoenA(N)E™,
E-=\R, E" in z=1, whereR, andR, are the reflectivity (A2)

036221-12



DERIVATION OF SEMICONDUCTOR LASER MEAN. .. PHYSICAL REVIEW E 66, 036221 (2002

For the carrier density, complications appear because of the
v?|E*|? explicit z dependance in EqA3) through the exponential

factors. Thus no evolution equations for the carrier density

valid on the whole rangee[ —1,1] can be derived. In the
+A(PTHET—PYE*Y) following, in order to simplify the notation thedependence

of the variablesE, P, and N will just be mentioned. We
introduce the functiori defined as

JN J i
at — =D\ V?N- 7nN+ 4ﬁ €0€r( X0 — Xo)

XefzInR_i_ i2|Ef|ZezlnR
14

V

zInR -_ *\aZINR
Xe HMRL (P rEPTE e ] (A3) f(2)={eoenl s N(2) — xoM(2)][E(2) |2

written with suppressing the primes contain both an addi- +P*(2)E(2)-P(2)E*(2)}e *"F,

tional electric field damping term-c|InR/2n,LE™ as soon ) _ ) )

set, and also an explicit spatial dependence through the ei€ simpler form

ponential factore ?"Rande?"R,

—N=D V2N-—y,N+ 77—‘]+—

2. Introduction of periodic variables at N I 4h
The electric field does not obey periodic boundary condi- (A5)

tions, and a decomposition of Fourier type cannot be intro-
duced. To solve this problem, we introduce a new electridor ze[0,1]. Substitutingz with —z in the previous equation
field ~E(x,y,z,t) which will be periodic. It is defined on a leads to the evolution equation for the carrier density Zor
domain of twice the width of the Fabry-Re cavity and is €[ —1,0],
equal to the forward electric field for positive values of the
longitudinal coordinate E(x,y,z,t)=E*(x,y,z,t) if z oN
€[0,1] and equal to the symmetric of the backward electric  dt
field with respect to the plane=0 for negative values of.
E(x,y,z,t)=E " (x,y,—zt) if ze[—1,0]. This new electric

field is a two-periodic function. The same transformation 'SThese equations on the unfolded periodic domain can be

applied to deduce the new polarization fi€drom the ini-  very efficiently solved numerically using spectral methods.
tial polarization fieldsP*. Because the carrier density is a

scalar instead of a vector, the link between the new carrier
densityN andN is different from the previous definitions. It

is simply defined a§l(x,y,z,t)= N(x,y,zt) if ze[0,1] and
N(x,y,z,t)=N(x,y,— zt) if ze[—1,0]. The next step con- _Fourier decomposition with respect to theoordinate are
sists in finding the evolution equations &f P, andN. introduced,

1
2f(z)+—2f<—z>l,
14

DV i+ L
“ONVRENT o T aR

1
vzf(—z)+—2f(z)].
14

(AB)

APPENDIX B: MODAL DECOMPOSITION

1. General links between Fourier components

. o E(x,y,zt) Ej(x,y,1)
3. Equations for the new periodic fields _ - ” )| =
— I(Kiz—w;t i
The behaviors of the electric and polarization fields for P(xy.2,) _jzz_m el Py, I
ze[—1,0] are obtained by substituting with —z in Egs. N(x,y,z,t) Nj(x,y,t)

(A1) and(A2), and read
where the dimensionless wave numbers are selected such

JE ¢ OE thatk,=nm, n=0,=1,£2, ... inorder to satisfy the peri-
ot + nL dz odic boundary conditions. The dimensional frequency of the
’ 5 nth mode is given by the dispersion relatian=Kk,c/ngL.
~ dc 1 _ o -~ P In order to keep on performing analytical calculations,
=—kE+ Z_%{RV E+KT| xo(N)E+ a” explicit expressions of the nonlinear couplings between the

electric field, the polarization field, and the carrier density
B are introduced. The nonlinear couplings appear through the

— ={-To(N)+i[8o— s(N)}P—i e, A(N)E, carrier density dependence of the parameters involved in the
at Lorentzian approximation of the susceptibility. We will study

_ ~_ the case of a linear dependence with respect to the carrier
for ze[—1,1] where we have introduced the electric field density of all these parameters,

damping coefficient
Xo(N)=x1+ x2N,

c|/inR|
2ngL (A4) A(N)=A,+ AN,

K=
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Io(N)=T;+T,N, thogonality property, we need to make appear integrations on
the rangeze[—1,1] in the expressions of the functions
S(N)= 61+ &,N. I,(v,R) andJ,(v,R), for example by writing

Using the orthogonality property® e'&i—kZdz=25 ., 1 _ 1

_ . 1 ~ < 0], —i(knz— wpt)
where §; , designs the Kinecker delta, we obtain that the  In(»,R)= 7lf(2)e nement) dz+ F_l
nth Fourier componenE, obeys the following evolution

Kn(R),

equation: 1
B Jn(v,R)=f f(—z)e 7o) dz+ (p*—1)L,(R),
JE, - 1 -1
—=—kE,+ —V?%E,
at 2ng | K where we have introduced the functions
- - P, 0 _
+KT XlEn+X22i NiEn—i+60€b ] KH(R)zf f(z)e (knz=enlldz,
-1

and thatP,, obey the equation 0 _
Ln(R)=J f(—z)e 'nz=enlqz,
-1

P, -~
=[-T1+i(8yg— 81) P, —(T,+i6,)
at =1 0= 2)1P ? ? Like in the study of a ring cavity18], we are led to intro-
duce the mode-mode coupling coefficients in order to calcu-
X > NP, —iegen| AlEL+ALD NiEn_i} late all the scalar products involved between the funcfion
: ' and the exponential factoes ' (knz~nt)

The form of the carrier densiti evolution equation de- . " 5
pends on the sign of the longitudinal coordinatevhich will I = f elkpzg—zIn Rdzzﬂ 1-R
complicate the obtention of the evolution equation of it L ) R ik,—InR’
Fourier components of the carrier density. By integrating Eq.

(A5) betweenz=0 andz=1 and Eq.(A6) betweenz=—1 Lok ekp  1-R?
andz=0, by grouping together the terms containif(g), 0p= f_le et Ndz= R (ik.—InR)"
and the terms containinf( —z), and finally by introducing P

the functions Two mode-mode coupling coefficients have to be defined

because we have to take into account forward and backward

I.(v,R)= flf(z)e—i(knz—wnt)dz+ i electr?c and polariz_ation fields_. _ _
0 vt Using once again the Fourier expansions for the variables
0 E, P, andN and the orthogonality property we obtain that
xf 1f(z)e“("nz“"ﬂt)dz, the nth Fourier componenil,, obeys

1 Mo N e
‘Jn(VR)ZJ f(_z)efi(knsznt)dz+v4 2 ot —lwsNy [ =2| DV Nn_'YnNn+§v50,n
0

i 1
XJO f(_z)efi(knz—wnt)dzl +R V2|n(V,R)+ ﬁJn(V'R)
-1

. . (B1)
we obtain for all integen,

N, -
2 s —iwyN,

where

|n( V,R): —2i 606b( XZE EiE?Fi—j_ne_iwi*j*nt
]

e i(knz— oz

1 o~ - 7]J
= DNVAN— y N+ — o )

1 ew + X352 NiEJEEFi+j—k—ne_'w‘*1"“t)

iTh
L
4h

Jn(v,R)

V2

V2|n(V,R)+

+2 (PFET iy _qeomiviont
B

The functions (1y2)e’*n? wherek,=n= with n are or-
thonormal only if the scalar product consists in an integration ~PET,_ _ e i@t 4
on the whole intervak e[ —1,1]. Therefore to use the or- ) .

i—1)K R
== 1|Ku(R),
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. o e E - ic |1 ___ - -
Jn(V,R):_2|EOEb X&% EiEikQ*i+j*ne : Iilint &t =_KEO+H szEo‘F Kr X1E0+X2NOEO
' ¢]
+x52, NiEEF Qi j e @ikt +—P0
i,k €o€p) )’
+2 (E’;kkE'jQi,j,neiiw_H'j_nt O"AF')O X ~ ) ~
1]

_t:[_rl+|(5o_ 81)1Po— (I'o+i 82)NoPg

“PE*Q .. e oty 4 (pA— . : = A=
PIETQ-isj-ne )+ DL(R) —i€gep[ A1Eg+ ANGE,],

The general case leads to take into account numerous inter- 2 INo 0 D.VZN N o
ot N o~ YnlNo
actions between the electric field, the polarization field, and
the carrier density. However, in the limit case of perfect re-
flecting wallsR—1, the mode-mode coupling coefficients
reduce to delta coefficients',=\ &op and Qp=\dop,  Using the definition of thenth Fourier component, and in-
o troducing the usual mean-field quantities defined(Es)
r=R; tends toward 1. As soon &+ 0 in order to have =[iE*dz, (P*)=[iP"dz and (N)=/iNdz we obtain
finite coefﬁmentseJ'”R (in particular, in the case of perfect that the zeroth Fourier components are linked to the mean-
reflecting wallsR—1), the functionf is bounded ornze field quantiies by Eq=(E*)+(E"))/2, Po=({(P*)
[ —1,1]. Therefore both the products ¢f/~—1)K,(R) and +(P7))/2 and Ny=(N). Suppressing the zero index, we
(v*— 1)L (R) are vanishing when the two end mirrors of the have proved that the effective Bloch equations reduce to the
Fabry-Peot cavity are taken perfectly reflecting. Then Eq. mean-field model equations

(B1) simplifies in the form
P . .
—r={=To(N) +i[ 3= 5(N)}P—i coerAN)E,

nd
4h{ 2i egep| x1|Eol?

+ x3No|Eol2]+ PE Eq— PoES .

JE ic [1
—=—«E+ —{RV2E+ KT

P
Xo(N)E+——
at 2ng

€0€p

N,
2 p —lw,N,

25 S L1
=2| D\V Nn_'ynNn+av50,n N ) iN .
E:DNV N_Yn(N_No)‘i“E{Eofb[Xo(N)
ix i " = F ” NI = =
+E —2I606b()(12i EiEi*,n-i‘)(zi’j NiEjEi*Jrjfn _XO(N)]|E|2+ P*E—PE*}.

~ = ~ o~y ) Instead of keeping the external injected curréntve have
+2 (PFEisn—PiEr ) —2ieoey introduced the injected carrier densig which is the par-
' ticular value of the carrier density linked to the curreht
through the relation §J/ew)=vy,Ny. Although the mean
2 EEf oo field effective Bloch equations derived above are rigorously
valid for R— 1, they also remain valid for lossy semiconduc-
tor lasers.

APPENDIX C: DERIVATION OF THE SEMICONDUCTOR

+z (P* El—n P. E,+n)e_i‘”2nt}. LASER SWIFT-HOHENBERG EQUATION

In this appendix we outline the derivation of the SH equa-
tion. Beyond threshold<<1 no laser emission exists and the
, ) solution of the simplified MFEBE is €,p,n)=(0,0,0).

2. Main Fourier order Slightly about threshold, at a small distaneg=r—1, we

The evolution equations of the amplitudes labeled by arcan thus expect the solutioe,p,n) to be small. We assume
index different from zero involve nonlinear terms that alwaysthat this solution is of ordee and look for solution in the
include at least one amplitude labeled by an inaex0.  form (e,p,n)=e€ (€,,p1,N1)+ €%(€,,p2,N,)+ -, Where
Therefore the amplitudes labeled by an index0 remain  the (g;,p;,n;)’s depend slowly on time and space.
equal to zero for all time if they are equal to zero at the initial We now plug these expressions into the simplified mean
timet=0. This means that we just have to take into accounfield effective Bloch equations, and identify the coefficients
the zeroth Fourier modes, which leads to of powers ofe at each order. At order one, we get
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o€,=0pPq,
P1=¢€q,
bn;=0,
which impliesn;=0. The solution is thee;=p;= ¢ where

¢ is a complex variable. At order two, the simplified MFEBE
yield

? 2

&_ﬂ_lav e1=o(p2—ey),
J

T = +in|p1=€— P2,

1
bn2=§(e’{ p;+epi)—f |egf?

In terms ofy, these equations read

J 2
U(ez_pz):_(ﬁ—lav U,

J
(pz_ez):_((ﬂ- +ing |,

bny=(1—1)|y2

The solvability condition for the first two equations involves
a condition ony, which will be the dynamic equation sought
for. It reads at this order

J
(o+ 1)(9—_;:/!1

i(aV2—0n1)¢.

One can then choos=0 and

J
Po=— (&T +|7]1)¢/f

1-f
np=——[l*
At next order, we get

oe

77, ~olPa—esti(+ik)(1-ngey],

0 ap, .
(&T +in p2+aT e3—Pst(1l—ny)[e;—(u+iv)p,],
J 2 1 * *
bns+ &T—CV :E(elp2+elp2),
which reads

PHYSICAL REVIEW B66, 036221 (2002

1
o(es=po) =~ e+ +ik)| 1= 5 0y,

(9 2

(p3—e3)=—07—_|_2+ (9—-|-1+i771) 1

1—f
+(1—T|¢|2>[1—(U+iv)]¢,
1—f/ o
b”f‘T(ﬁ‘CVZ)W

+ ia VZ * *V2
m(dl b=yt VoY),

and requires another solvability condition, which will give
the behavior ofy at the time scald,. Using the relation

J 2
(9T +|’)71 1+aV )1//,

the solvability condition reads

I
aT,

b= (o +1)(7]

(o0+1)— ol

Y+[i(j+ik)+1—(u+iv)]

=g —

L 1-f
x| 1=~ lvl* ]y
Again we choose;=

1 7]1+aV
| o+1

0, and get forp; andns,

2\ 2

Y+[1—ci(j+ik)—(u+iv)]

o+1

1—f
X 1—T|¢|2)¢],

ia
b(oc+1)

1 1_f) V2 * *VZ
5+ | (VP =gty

n3:

1-f
2 2
5 cVeyle.

The final equation fory is obtained by collecting all the
terms and reads

I

(0'+1)——(o'+1) W eV

e—+e’—

aT, | 9T,

One can get rid of the small parameteby reintroducing the
original variablesx=X/\e, y=Y/\e, =€ 5, r—1=¢€,
and redefinings ¢ as. This yields an equation fap of the
Swift-Hohenberg type

of[i(j+ik)+1—(u+iv)]

((T-Fl)i—lﬂ:

n+aVv?
o+1

1-f 2
X (f—1)¢—T|¢| U= 1

+i(aV?—on)y.
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We can also obtain the link between the order paramgter _ 1 n—ag?\?
involved in the Swift-Hohenberg equation and the electric n=r—1- T k—u\ o711 | (D1)
field e, the polarization fieldp, and the carrier density
appearing in the simplified MFEBE. Collecting all the terms . b _
corresponding to different powers efleads to 2=—n, (D2)
1-f
e=ee;+ e2e,+ €3e3= 1, i [
p=i{1-——(p—aq)+ k- ——=(gj+
o= epyt €p,t €%, P (1 o1 (mmag)+ k= ——=(oj+v)
. 1 —aq2 2
i 1 [ [p+av?)? 7 ]
— 2 _ X e. (D3)

1—f The carrier density is of second orderdriEq. (D1)]. Since
+[1-oi(] +ik)—(U+iv)]<r—l—T|l//|2)¢]: b is of ordere?, Eq.(D2) leads toe of order 2. Equation
(D3) indicates that at the lowest order énthe value of the

polarization fieldsp_Jis of the same order as the value of the

n=e’n,+e°ny
electric fielde. Therefore we look for expansions gfp, and

_1_f 2 ia E 1-f n as power series of started at the second order, namely,
=——lyl*+ +
b b(oc+1)\2 b 5 s
- (e,p,n)=€“(€3,p2,ny) + € (€3,p3,N3)+---.
X(¢V2¢*—¢*V2¢)+TCV2|¢|2- At order two, we get
. . 0'62=0'p2,
Last, introducing the new order parameter
=e s
F=e ol D—k-wi(er Dlat [Tk uy(1—F) o, P2=¢€2
0=0,

where thea coefficient is defined ag=j—v/1—k—u, we

obtain the simplified Swift-Hohenberg equation which givese,=p,= ¢ and the equations at order three are

- J
Y -~ [np+aVv?\Z (——iaV2 e,=o(P3—€3),
=D (1—k—w)T— JT
(0+1) 5= 0| (r=1)(1—k—w)j—| == ]
1 o\
—(1+ia)E [J23]+i(@V=on)}: aT, 7 |P2= €T Pa

APPENDIX D: DERIVATION OF THE COUPLED SH
EQUATIONS IN THE STIFF LIMIT

i V2|n,=0
a_Tl_C n,=u,

. . . — which read in terms of the complex varia
We will now give details of the derivation of the two P ble

coupled equations which describe the semiconductor laser i,
behavior in the stiff-limit of the simplified MFEBE. o(€3—Pg)=—| o7 ~iaV
As in the derivation of the semiconductor laser Swift- !

¥,

Hohenberg equations, we assume that the deviation from the 9
critical detuning# is small, namely,n= € ;. In addition, (p3—e3)= _(ﬁﬂ 771) U,
we suppose that the paramelds now of ordere? (see Refs. 1

[10,11), i.e., b=€? b,, and thatr is still given byr=1 p
+¢€% We then introduce the spatial scal®s=yex, Y T—Cvz)nfo-
= /ey, and the two time scaleB;=et and T,= €’t. ITa

Contrary to the casé of order 1, the expansion as a g compatibility of the first two equations requires the fol-

power series ot of the solution &,p,n) will not start at the ,,ing solvability condition, which describes the variations
first order: indeed if we look for traveling wave solution of of ¢ at the time scald:

the simplified MFEBE, Eq(10) sought in the form &,p)

=(e,p) €@*Y n=n, we can deduce that for a small o

value of the detuningy and for a pumping parameter close (U+1)3_1-1:'(av —on)y. (D4)
from its threshold value.=1 a traveling wave exists, asso-

ciated with the expressions We can then choose;=0 and
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B )¢ | ————(m+avd)y. ( +1)a_¢:( +1) e—¢+62%
pe=—| 7, i) ~ gy I T PR A
At fourth order, The spatial derivatives in EqéD4) and(D5) are derivatives
e with respect to the slow scaleé=/ex and Y= /ey. Any
T2 = o[pa—euti(j+ik)(1—nye,], term of the formeV? then corresponds t§ in terms of
d spatial derivatives with respect foandy. Letting n=¢€“ n,
+ € n; we get
J ap, .
(&T +in p3+a-|— =e4—pst(1-ny)[e;—(u+iv)py], P
(o+1 ol [i(j+ik)+1—(u+iv)][(r=1)¢y—ny]
J 1
T T 02| N2t | o= —CV? Ing=5 (€5 pateppy) — flegl?, n+av?\? ,
2 1 — i —
prar} Y ti(ave—on)y.
ie.,
’ Similarly, the equation fon is
0-(64_ p4): O"T +O—|(J +|k)(1 n2)¢ an &_’_ . %_’_ﬁ
; , ikl at, < \aT, 4T,
(p4—e4)=—(9—_|_2+ &_T1+i771) =cV?(e?n,+ eny)
4 2
X+ (1—ny)[1—(u+iv)]y, + €' [—bony+(1—1)[¢]7],
P an, i.e., in terms of the original variables and redefinifgy as
L ev2 _ _ 2
((ﬂ_l cv ”3+[7-|- bon,+(1—1)| ] i,
Again we obtain the following solvability condition: on —=cV2n—bn+(1—f)| 42
at
Iy n+av?|? L
(U+1)3_T2:U "\ Toxr ) prliGrikFL Finally, the expressions @& andp versusy are

_ e=ee;+ €%e,+ e3e;= i,
—(Utiv)]J(1=nx) ¢ ;. (D5)
P=epy+ €’po+ €°ps
We can choose,=0 and calculate
i 1
1 [ [mtav?? =y (1;+aV2)¢+ —1
Pa=or1 o+1
n+av?|? T
S . X{ = +|1-0ol()+I
+[1—a|(]+|k)—(u+|v)](1—n2)¢]. or1 ) YLz airik)
We now can collect all the terms and get the equation/for —(u+iv)](r—1- n)z,b].
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